Skip to main content
Log in

Matrix-shimmed ion cyclotron resonance ion trap simultaneously optimized for excitation, detection, quadrupolar axialization, and trapping

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

A different symmetry is required to optimize each of the three most common Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) electric potentials in a Penning (ICR) ion trap: one-dimensional dipolar ac for excitation (or detection), two-dimensional azimuthal quadrupolar ac excitation for ion axialization, and three-dimensional axial quadrupolar dc potential for ion axial confinement (trapping). Since no single trap shape simultaneously optimizes all three potentials, many trap configurations have been proposed to optimize the tradeoffs between the three requirements for a particular experiment. A more general approach is to divide each electrode into small segments and then apply the appropriate potential to each segment. Here, we extend segmentation to its logical extreme, by constructing a “matrix-shimmed” trap consisting of a cubic trap, with each side divided into a 5 × 5 grid of electrodes for a total of 150 electrodes. Theoretically, only 48 independent voltages need be applied to these 150 electrodes to generate all three desired electric potential fields simultaneously. In practice, it is more convenient to employ 63 independent voltages due to construction constraints. Resistive networks generate the potentials required for optimal quadrupolar trapping and quadrupolar excitation. To avoid resistive loss of excitation amplitude and detected signal, dipolar excitation/detection voltages are generated with a capacitive network. Theoretical Simion 6. 0 simulations confirm the achievement of near-ideal potentials of all three types simultaneously. From a proof-of-principle working model, several experimental benefits are demonstrated, and proposed future improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawrence, E. O.; Livingston, M. S. The Production of High Speed Light Ions without the Use of High Voltages. Phys. Rev. 1932, 40, 19–35.

    Article  CAS  Google Scholar 

  2. Brown, L. S.; Gabrielse, G. Geonium Theory. Physics of a Single Electron or Ion in a Penning Trap. Rev. Mod. Phys. 1986, 58, 233–311.

    Article  CAS  Google Scholar 

  3. Guan, S.; Marshall, A. G. Ion Traps for FT-ICR/MS: Principles and Design of Geometric and Electric Configurations. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 261–296.

    Article  CAS  Google Scholar 

  4. Vartanian, V. H.; Anderson, J. S.; Laude, D. A. Advances in Trapped Ion Cells for FTICRMS. Mass Spectrom. Rev. 1995, 14, 1–19.

    Article  CAS  Google Scholar 

  5. Beu, S. C.; Laude, D. A. Jr., Open trapped ion cell geometries for FT/ICR/MS. Int. J. Mass Spectrom. Ion Proc. 1992, 112, 215–230.

    Article  CAS  Google Scholar 

  6. Vartanian, V. H.; Laude, D. A. Simultaneous Trapping of Positive and Negative Ions Using a Nested Open-Ended Trapped-Ion Cell in FTICR. Organic Mass Spectrom. 29, 1994, 692–694.

    Article  CAS  Google Scholar 

  7. Beu, S. C.; Laude, D. A. Jr., Elimination of Axial Ejection during Excitation with a Capacitively Coupled Open Trapped-Ion Cell for FTICRMS. Anal. Chem. 1992, 64, 177–180.

    Article  CAS  Google Scholar 

  8. Caravatti, P.; Allemann, M. RF Shim by Trap Segmentation. Organic Mass Spectrom. 1991, 26, 514–518.

    Article  CAS  Google Scholar 

  9. Hanson, C. D.; Castro, M. E.; Kerley, E. L.; Russell, D. H. RF-Shimmed Trap, hemispherical end caps. Anal. Chem. 1990, 62, 520–526.

    Article  CAS  Google Scholar 

  10. Wang, M.; Marshall, A. G. A ‘Screened’ Electrostatic Ion Trap for Enhanced Mass Resolution, Mass Accuracy, Reproducibility, and Upper Mass Limit in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1989, 61, 1288–1293.

    Article  CAS  Google Scholar 

  11. Chen, R.; Marshall, A. G. An Off-Center Cubic Ion Trap for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes. 1994, 133, 29–38.

    Article  CAS  Google Scholar 

  12. Marto, J. A.; Schweikhard, L.; Marshall, A. G. A two-electrode ion trap for FTICR Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes. 1994, 137, 9–30.

    Article  CAS  Google Scholar 

  13. Wang, M.; Ledford, Jr., E. B.; Marshall, A. G. Experimental evaluation of a hyperbolic trapped-ion cell for FT/ICR mass spectrometry, in FACSS XIV; Federation of Analytical Chemistry and Spectroscopy Societies: Detroit, MI, 1987; p 43.

  14. Grosshans, P. B.; Chen, R.; Marshall, A. G. Linear excitation and detection in FT/ICR/MS. Int. J. Mass Spectrom. Ion Processes 1994, 139, 169–189.

    Article  CAS  Google Scholar 

  15. Lee, S. H.; Wanczek, K.-P.; Hartmann, H. A New Cylindrical Trapped Ion ICR Cell. Adv. Mass Spectrom. 1980, 8B, 1645–1649.

    CAS  Google Scholar 

  16. Naito, Y.; Fujiwara, M.; Inoue, M. Improvement of the electric field in the cylindrical trapped-ion cell. Int. J. Mass Spectrom. Ion Phys. 1992, 120, 179–192.

    Article  CAS  Google Scholar 

  17. Rempel, D. L.; Grese, R. P.; Gross, M. L. A scaling technique for studying the dynamics of high mass ions in FTMS: A preliminary report. Int. J. Mass Spectrom. Ion Processes. 1990, 100, 381–395.

    Article  CAS  Google Scholar 

  18. Gorshkov, M. V.; Guan, S.; Marshall, A. G. Dynamic Ion Trapping for FT/ICR/MS: Simultaneous Positive and Negative Ion Detection. Rapid Commun. Mass Spectrom. 1992, 6, 166–172.

    Article  CAS  Google Scholar 

  19. Rempel, D. L.; Gross, M. L. High Pressure Trapping in FTMS: A Radiofrequency-Only Mode Event. J. Am. Soc. Mass Spectrom. 1992, 3, 590–594.

    Article  CAS  Google Scholar 

  20. Hunter, R. L.; Sherman, M. G.; McIver, R. T. Jr., Elongated Trap; z-ejection of electrons. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 259–274.

    Article  CAS  Google Scholar 

  21. Wang, M.; Marshall, A. G. Elimination of z-ejection in FT/ICR mass spectrometry by radiofrequency electric field shimming. Anal. Chem. 1990, 62, 515–520.

    Article  CAS  Google Scholar 

  22. Knobeler, M.; Wanczek, K. P. Shimming electric field in an ICR ion trap. Int. J. Mass Spectrom. Ion Processes. 1993, 125, 127.

    Article  CAS  Google Scholar 

  23. Guan, S.; Huang, Y.; Marshall, A. G. Linearized dipolar excitation and detection and quadrupolarized axialization in a cylindrical ion cyclotron resonance ion trap. J. Mass Spectrom. 1995, 30, 1593–1598.

    Article  CAS  Google Scholar 

  24. Sommer, H.; Thomas, H. A.; Hiopple, J. A. The measurement of e/M by cyclotron resonance. Phys. Rev. 1951, 82, 697–702.

    Article  CAS  Google Scholar 

  25. Grosshans, P. B.; Shields, P. J.; Marshall, A. G. Comprehensive Theory of the Fourier Transform Ion Cyclotron Resonance Signal for All Ion Trap Geometries. J. Chem. Phys. 1991, 94, 5341–5352.

    Article  CAS  Google Scholar 

  26. Sharp, T. E.; Eyler, J. R.; Li, E. Electrostatic potential for an orthorhombic ion trap. Int. J. Mass Spectrom. Ion Phys. 1972, 9, 421–439.

    Article  CAS  Google Scholar 

  27. Rempel, D. L.; Huang, S. K.; Gross, M. L. Relation of Signal Sensitivity and Ion z-motion in Cubic Cells. Theory and Implication for Ion Kinetic Studies. Int. J. Mass Spectrom. Ion Processes. 1986, 70, 163–184.

    Article  CAS  Google Scholar 

  28. Jackson, G.; Canterbury, J. D.; Guan, S.; Marshall, A. G. Linearity and Quadrupolarity of Tetragonal and Cyclindrical Penning Traps of Arbitary Length-to-Width Ratio. J. Am. Soc. Mass Spectrom. 1997, 8, 283–293.

    Article  CAS  Google Scholar 

  29. Kofel, P.; Allemann, M.; Kellerhals, H.; Wanczek, K.-P. Coupling of axial and radial motions in ICR cells during excitation. Int. J. Mass Spectrom. Ion Processes. 1986, 74, 1–12.

    Article  CAS  Google Scholar 

  30. Dahl, D. A.; Delmore, J. E. “SIMION 3D Version 6. 0,” Idaho National Engineering Laboratory, P. O. Box 2726, Idaho Falls, ID 83403, 1988.

    Google Scholar 

  31. Mitchell, D. W.; Hearn, B. A.; DeLong, S. E. Excitation electric field inhomogeneities in a cubic ICR cell: ion motion far away from the cyclotron frequency. Int. J. Mass Spectrom. Ion Processes. 1993, 125, 95–126.

    Article  CAS  Google Scholar 

  32. van der Hart, W. J.; van de Guchte, W. J. z-ejection. Int. J. Mass Spectrom. Ion Processes. 1988, 82, 17–31.

    Article  Google Scholar 

  33. Huang, S. K.; Rempel, D. L.; Gross, M. L. Mass-dependent z-excitation of ions in cubic traps used in FTMS. Int. J. Mass Spectrom. Ion Processes. 1986, 72, 15–31.

    Article  CAS  Google Scholar 

  34. Mitchell, D.; Delong, S.; Cherniak, D.; Harrison, M. z-axis Oscillation Sidebands in FT/ICR Mass Spectra. Int. J. Mass Spectrom. Ion Processes. 1989, 91, 273–282.

    Article  Google Scholar 

  35. Marshall, A. G.; Grosshans, P. B. “Fourier transform ion cyclotron resonance mass spectrometry: The teenage years. Anal. Chem. 1991, 63, 215A-229A.

    Article  CAS  Google Scholar 

  36. Grosshans, P. B.; Marshall, A. G. Can Fourier Transform Mass Spectral Resolution be Improved by Detection at Harmonic Multiples of the Fundamental Ion Cyclotron Orbital Frequency? Int. J. Mass Spectrom. Ion Processes. 1991, 107, 49–81.

    Article  CAS  Google Scholar 

  37. Nikolaev, E. N.; Gorshkov, M. V.; Mordehai, A. V.; Talrose, V. L. ICR Signal Detection at Multiples of the Cyclotron Frequency. Rapid Commun. Mass Spectrom. 1990, 4, 144–146.

    Article  CAS  Google Scholar 

  38. Pan, Y. P.; Ridge, D. P.; Rockwood, A. L. Harmonic Enhancement in ICR. Int. J. Mass Spectrom. Ion Processes. 1988, 84, 293.

    Article  CAS  Google Scholar 

  39. Pan, Y. P.; Ridge, D. P.; Wronka, J.; Rockwood, A. L. Multiple-point model for Harmonic Enhancement. Rapid Commun. Mass Spectrom. 1987, 1, 121.

    Article  Google Scholar 

  40. Limbach, P. A.; Grosshans, P. B.; Marshall, A. G. Harmonic Enhancement of a Detected ICR Signal by Use of Segmented Detection Electrodes. Int. J. Mass Spectrom. Ion Processes. 1993, 123, 41–47.

    Article  CAS  Google Scholar 

  41. Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Shrink-Wrapping an Ion Cloud for Higher-Performance Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chem. Rev. 1994, 94, 2161–2182.

    Article  CAS  Google Scholar 

  42. Hendrickson, C. L.; Drader, J. J.; Laude, D. A. Jr., Simplified Application of Quadrupolar Excitation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 448–452.

    Article  CAS  Google Scholar 

  43. Jackson, G. S.; Hendrickson, C. L.; Reinhold, B. B.; Marshall, A. G. Two-plate vs. four-plate azimuthal quadrupolar excitation for FT-ICR mass spectrometry. Int. J. Mass Spectrom. Ion Processes. 1997, 165/166, 327–338.

    Article  CAS  Google Scholar 

  44. Ledford, E. B. Jr.; Rempel, D. L.; Gross, M. L. Space Charge Effects in Fourier Transform Mass Spectrometry. Mass Calibration. Anal. Chem. 1984, 56, 2744–2748.

    Article  CAS  Google Scholar 

  45. Yin, W. W.; Wang, M.; Marshall, A. G.; Ledford, E. B., Jr., Experimental evaluation of a hyperbolic ion trap for FT/ICR/MS. J. Am. Soc. Mass Spectrom. 1992, 3, 188–197.

    Article  CAS  Google Scholar 

  46. Senko, M. W.; Canterbury, J. D.; Guan, S.; Marshall, A. G. A High-Performance Modular Data System for FT-ICR Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1839–1844.

    Article  CAS  Google Scholar 

  47. Limbach, P. A.; Grosshans, P. B.; Marshall, A. G. Experimental Determination of the Number of Trapped Ions, Detection Limit, and Dynamic Range in FT/ICR/MS. Anal. Chem. 1993, 65, 135–140.

    Article  CAS  Google Scholar 

  48. Grosshans, P. B.; Marshall, A. G. Theory of Ion Cyclotron Resonance Mass Spectrometry: Resonant Excitation and Radial Ejection in Orthorhombic and Cylindrical Ion Traps. Int. J. Mass Spectrom. Ion Processes. 1990, 100, 347–379.

    Article  CAS  Google Scholar 

  49. Mitchell, D. W.; Smith, R. D. Two-Dimensional Many Particle Simulation of Trapped Ions. Int. J. Mass Spectrom. Ion Processes. 1997, 165/166, 291–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, G.S., White, F.M., Guan, S. et al. Matrix-shimmed ion cyclotron resonance ion trap simultaneously optimized for excitation, detection, quadrupolar axialization, and trapping. J Am Soc Mass Spectrom 10, 759–769 (1999). https://doi.org/10.1016/S1044-0305(99)00048-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00048-3

Keywords

Navigation