Skip to main content
Log in

Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C

  • Focus: H/D Exchange Of Proteins In Solution
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Troponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090±86 Å2 for apo-cNTnC to 3108±71 Å2 for Ca2+-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca2+-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Englander, J. J.; Roger, J. R.; Englander, S. W. Measurement and calibration of peptide group hydrogen-deuterium exchange by ultraviolet spectrophotometry. Anal. Biochem. 1979, 92, 517–524.

    Article  CAS  Google Scholar 

  2. Woodward, C.; Simon, I.; Tuchsen, E. Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 1982, 48, 135–160.

    Article  CAS  Google Scholar 

  3. Englander, S. W.; Kallenbach, N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Quart. Rev. Biophys. 1984, 16, 521–655.

    Article  Google Scholar 

  4. Gregory, R. B.; Rosenberg, A. Protein conformational dynamics measured by hydrogen isotopic exchange techniques In Methods in Enzymology; Hirs, C. H. W., and Timasheff, S. N., Eds.; Academic: Orlando, 1986; Vol 131, pp 448–508.

    Google Scholar 

  5. Englander, S. W.; Mayne, L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 243–265.

    Article  CAS  Google Scholar 

  6. Katta, V.; Chait, B. T. Hydrogen/deuterium exchange electrospray ionization mass spectrometry: a method for probing protein conformational changes in solution. J. Am. Chem. Soc. 1993, 115, 6317–6321.

    Article  CAS  Google Scholar 

  7. Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Detection of Transient Protein Folding Populations by Mass Spectrometry. Science 1993, 262, 896–900.

    Article  CAS  Google Scholar 

  8. Wagner, D. S.; Anderegg, R. J. Conformation of cytochrome c studied by deuterium exchange-electrospray ionization mass spectrometry. Anal. Chem. 1994, 66, 706–711.

    Article  CAS  Google Scholar 

  9. Wang, F.; Blanchard, J. S.; Tang, X.-J. Amide hydrogen exchange/electrospray ionization mass spectrometry studies of substrate and inhibitor binding and conformational changes of E. coli dihydrodipicolinate reductase. Biochemistry 1997, 36, 3755–3759.

    Article  CAS  Google Scholar 

  10. Chung, E. W.; Nettleton, E. J.; Morgan, C. J.; Grob, M.; Miranker, A.; Radford, S. E.; Dobson, C. M.; Robinson, C. V. Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. Prot. Sci. 1997, 6, 1316–1324.

    Article  CAS  Google Scholar 

  11. Robison, C. V.; Gross, M.; Eyles, S. J.; Ewbank, J. J.; Mayhew, M.; U, H. F.; Dobson, C. M.; Radford, S. E. Conformation of GroEL-bound α-lactalbumin probed by mass spectrometry. Nature 1994, 372, 646–651.

    Article  Google Scholar 

  12. Zhang, Z.; Smith, D. L. Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Prot. Sci. 1993, 2, 522–531.

    Article  CAS  Google Scholar 

  13. Smith, D. L.; Zhang, Z. Probing noncovalent structural features of proteins by mass spectrometry. Mass Spectrom. Rev. 1994, 13, 411–429.

    Article  CAS  Google Scholar 

  14. Zhang, Z.; Post, C. B.; Smith, D. L. Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry 1996, 35, 779–791.

    Article  CAS  Google Scholar 

  15. Johnson, R. S. Mass spectrometric measurement of changes in protein hydrogen exchange rates that result from point mutations. J. Am. Soc. Mass Spectrom. 1996, 7, 515–521.

    Article  CAS  Google Scholar 

  16. Remigy, H.; Jaquinod, M.; Y, P.; Gagnon, J.; Cheng, H.; Xia, B.; Markley, J. H.; Hurley, J. K.; Tollin, G.; Forest, E. Probing the influence of mutations on the stability of a ferredoxin by mass spectrometry. J. Prot. Chem. 1997, 16, 527–532.

    Article  CAS  Google Scholar 

  17. Resing, K. A.; Ahn, N. G. Deuterium exchange mass spectrometry as a probe of protein kinase activation. Analysis of wild type and constitutively active mutants of MAP kinase Kinase-1. Biochemistry 1998, 37, 463–475.

    Article  CAS  Google Scholar 

  18. Wang, F.; Li, W.; Emmett, M. R.; Hendrickson, C. L.; Marshall, A. G.; Zhang, Y.-L.; Wu, L.; Zhang, Z.-Y. Conformational and dynamic changes of Yersinia protein tyrosine phosphatase induced by ligand binding and active site mutation and revealed by H/D exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Biochemistry 1998, 37, 15289–15299.

    Article  CAS  Google Scholar 

  19. Johnson, R. S.; Walsh, K. A. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin. Prot. Sci. 1994, 3, 2411–2418.

    Article  CAS  Google Scholar 

  20. Zhang, Z.; Li, W.; Li, M.; Logan, T. M.; Guan, S.; Marshall, A. G. Higher-order structure and dynamics of FK506-binding protein probed by backbone amide hydrogen/deuterium exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Tech. Prot. Chem. 1997, VIII, 703–713.

    Article  Google Scholar 

  21. Zhang, Z.; Li, W.; Logan, T. M.; Li, M.; Marshall, A. G. Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Prot. Sci. 1997, 6, 2203–2217.

    Article  CAS  Google Scholar 

  22. Wang, F.; Scapin, G.; Blanchard, J. S.; Angeletti, R. H. Substrate binding and conformational changes of Clostridium glutamicum diaminopimelate dehydrogenase revealed by H/D exchange and electrospray mass spectrometry. Prot. Sci. 1998, 7, 293–299.

    Article  CAS  Google Scholar 

  23. McLafferty, F. W. High-resolution tandem FT mass spectrometry above 10 kDa. Acc. Chem. Res. 1994, 27, 379–386.

    Article  CAS  Google Scholar 

  24. Wu, Q.; Van Orden, S.; Cheng, X.; Bakhtiar, R.; Smith, R. D. Characterization of cytochrome c variants with high-resolution FTICR mass spectrometry: Correlation of fragmentation and structure. Anal. Chem. 1995, 67, 2498–2509.

    Article  CAS  Google Scholar 

  25. Senko, M. W.; Hendrickson, C. L.; Pasa-Tolic, L.; Marto, J. A.; White, F. M.; Guan, S.; Marshall, A. G. Electrospray ionization FT-ICR mass spectrometry at 9. 4 Tesla. Rapid Commun. Mass Spectrom. 1996, 10, 1824–1828.

    Article  CAS  Google Scholar 

  26. Kelleher, N. L.; Senko, M. W.; Siegel, M. M.; McLafferty, F. W. Unit resolution mass spectra of 112 kDa molecules with 3 Da accuracy. J. Am. Soc. Mass Spectrom. 1997, 8, 380–383.

    Article  CAS  Google Scholar 

  27. Buchanan, M. V.; Hettich, R. L. Characterization of large biomolecules by Fourier transform mass spectrometry. Anal. Chem. 1993, 65, 245A-259A.

    Article  CAS  Google Scholar 

  28. Amster, I. J. A tutorial on Fourier transform mass spectrometry. J. Mass Spectrom. 1996, 31, 1325–1337.

    Article  CAS  Google Scholar 

  29. Dienes, T.; Pastor, S. J.; Schürch, S.; Scott, J. R.; Yao, J.; Cui, S.; Wilkins, C. L. Fourier transform mass spectrometry—Advancing years (1992-Mid 1996). Mass Spectrom. Rev. 1996, 15, 163–211.

    Article  CAS  Google Scholar 

  30. Laude, D. A.; Stevenson, E.; Robinson, J. M. Electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometry In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997, pp 291–319.

    Google Scholar 

  31. Green, M. K.; Lebrilla, C. B. Ion-molecule reactions as probes of gas phase structures of peptides and proteins. Mass Spectrom. Rev. 1997, 16, 53–71.

    Article  CAS  Google Scholar 

  32. Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 1998, 17, 1–35.

    Article  CAS  Google Scholar 

  33. Marshall, A. G.; Senko, M. W.; Li, M.; Dillon, S.; Guan, S.; Logan, T. M. Protein molecular weight to 1 Da by 13C, 15N double-depletion and FT-ICR mass spectrometry. J. Am. Chem. Soc. 1997, 119, 433–434.

    Article  CAS  Google Scholar 

  34. Farah, C. S.; Reinach, F. C. The troponin complex and regulation of muscle contraction. FASEB J 1995, 9, 755–767.

    CAS  Google Scholar 

  35. Herzberg, O.; James, M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J. Molec. Biol. 1988, 203, 761–779.

    Article  CAS  Google Scholar 

  36. Potter, J. D.; Gergely, J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J. Biol. Chem. 1975, 250, 4628–4633.

    CAS  Google Scholar 

  37. Putkey, J. A.; Sweeney, H. L.; Campbell, S. T. Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J. Biol. Chem. 1989, 264, 12370–12378.

    CAS  Google Scholar 

  38. Putkey, J. A.; Liu, W.; Sweeney, H. L. Function of the N-terminal calcium-binding sites in cardiac/slow troponin C assessed in fast skeletal muscle fibers. J. Biol. Chem. 1991, 266, 14881–14884.

    CAS  Google Scholar 

  39. Szczesna, D.; Guzman, G.; Miller, T.; Zhao, J.; Farokhi, K.; Ellemberger, H.; Potter, J. D. The role of the four Ca2+ binding sites of troponin C in the regulation of skeletal muscle contraction. J. Biol. Chem. 1996, 271, 8381–8386.

    Article  CAS  Google Scholar 

  40. Negele, J. C.; Dotson, D. G.; Liu, W.; Sweeney, H. L.; Putkey, J. A. Mutation of the high affinity calcium binding sites in cardiac troponin C. J. Biol. Chem. 1992, 267, 825–831.

    CAS  Google Scholar 

  41. Li, M. X.; Gagne, S. M.; Spyracopoulos, L.; Kloks, C. P.; Audette, G.; Chandra, M.; Solaro, R. J.; Smillie, L. B.; Sykes, B. D. NMR studies of Ca2+ binding to the regulatory domains of cardiac and E41A skeletal muscle troponin C reveal the importance of site I to energetics of the induced structural changes. Biochemistry 1997, 36, 12519–12525.

    Article  CAS  Google Scholar 

  42. Li, M. X.; Chandra, M.; Pearlstone, J. R.; Racher, K. I.; Trigo-Gonzalez, G.; Borgford, T.; Kay, C. M.; Smillie, L. B. Properties of isolated recombinant N and C domains of chicken troponin C. Biochemistry 1994, 33, 917–1925.

    Article  CAS  Google Scholar 

  43. Li, M. X.; Gagne, S. M.; Tsuda, S.; Kay, C. M.; Smillie, L. B.; Sykes, B. D. Calcium binding to the regulatory N-domain of skeletal muscle troponin C occurs in a stepwise manner. Biochemistry 1995, 34, 8330–8340.

    Article  CAS  Google Scholar 

  44. Gagne, S. M.; Tsuda, S.; Li, M. X.; Smillie, B. D.; Sykes, B. D. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat. Struct. Biol. 1995, 2, 784.

    Article  CAS  Google Scholar 

  45. Spyracopoulos, L.; Li, M. X.; Sia, S. K.; Gagne, S. M.; Chandra, M.; Solaro, R. J.; Sykes, B. D. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 1997, 36, 12138–12146.

    Article  CAS  Google Scholar 

  46. Sia, S. K.; Li, M. X.; Spyracopoulos, L.; Gagne, S. M.; Liu, W.; Putkey, J. A.; Sykes, B. D. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J. Biol. Chem. 1997, 272, 18216–18221.

    Article  CAS  Google Scholar 

  47. Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G. External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976.

    Article  CAS  Google Scholar 

  48. Dharmasiri, K.; Smith, D. L. Regional stability changes in oxidized and reduced cytochrome c located by hydrogen exchange and mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 1039–1045.

    Article  CAS  Google Scholar 

  49. Fredricksen, R. S.; Swenson, C. A. Relationship between stability and function for isolated domains of troponin C. Biochemistry 1996, 35, 14012–14026.

    Article  CAS  Google Scholar 

  50. Slupsky, C. M.; Sykes, B. D. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 1995, 34, 15953–15964.

    Article  CAS  Google Scholar 

  51. Foguel, D.; Suarez, M. C.; Barbosa, C.; Rodrigues, J. J. Jr.; Sorenson, M. M.; Smillie, L. B.; Silva, J. L. Mimicry of the calcium-induced conformational state of troponin C by low temperature under pressure. Proc. Natl. Acad. Sci. USA 1996, 93, 10642–10666.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Li, W., Emmett, M.R. et al. Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C. J Am Soc Mass Spectrom 10, 703–710 (1999). https://doi.org/10.1016/S1044-0305(99)00039-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00039-2

Keywords

Navigation