Skip to main content
Log in

Comparison of continuous and pulsed labeling amide hydrogen exchange/mass spectrometry for studies of protein dynamics

  • Focus: H/D Exchange Of Proteins In Solution
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

In contrast to the rigid structures portrayed by X-ray diffraction, proteins in solution display constant motion which leads to populations that are momentarily unfolded. To begin to understand protein dynamics, we must have experimental methods for determining rates of folding and unfolding, as well as for identifying structures of folding and unfolding intermediates. Amide hydrogen exchange has become an important tool for such measurements. When urea is used to stabilize unfolded forms of proteins, the refolding rates may become slower than the rates of isotope exchange. In such cases, the intermolecular distribution of deuterium among the entire population of molecules may become bimodal, giving rise to a bimodal distribution of isotope peaks in mass spectra of the protein or its peptic fragments. When the protein is exposed continuously to D2O, the relative intensities of the two envelopes of isotope peaks give an integrated account of populations participating in the folding/unfolding process. However, when the protein is exposed only briefly to D2O, the relative intensities of the two envelopes of isotope peaks give an instantaneous measure of the folded/unfolded populations. Application of these two labeling methods to a large protein, aldolase, is described along with a discussion of specific parameters required to optimize these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, Y.; Smith, D. L. Identification of unfolding domains in large proteins by their unfolding rates. Biochemistry 1998, 37, 6256–6262.

    Article  CAS  Google Scholar 

  2. Dill, K. A.; Fiebig, K. M.; Chan, H. S. Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 1993, 90, 1942–1946.

    Article  CAS  Google Scholar 

  3. Gilmanshin, R.; Williams, S.; Callender, R. H.; Woodruff, W. H.; Dyer, R. B. Fast events in protein folding: Relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl. Acad. Sci. USA 1997, 94, 3709–3713.

    Article  CAS  Google Scholar 

  4. Roder, H.; Elöve, G. A.; Englander, S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labeling and proton NMR. Nature (London) 1988, 335, 700–704.

    Article  CAS  Google Scholar 

  5. Udgaonkar, J. B.; Baldwin, R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature (London) 1988, 335, 694–699.

    Article  CAS  Google Scholar 

  6. Kim, K.-S.; Woodward, C. Protein internal flexibility and global stability: Effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry 1993, 32, 9609–9613.

    Article  CAS  Google Scholar 

  7. Bai, Y.; Sosnick, T. R.; Mayne, L.; Englander, S. W. Protein folding intermediates: Native-state hydrogen exchange. Science 1995, 269, 192–197.

    Article  CAS  Google Scholar 

  8. Chamberlain, A. K.; Handel, T. M.; Marqusee, S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nature Struct. Biol. 1996, 3, 782–787.

    Article  CAS  Google Scholar 

  9. Bai, Y.; Karimi, A.; Dyson, H. J.; Wright, P. E. Absence of a stable intermediate on the folding pathway of protein A. Protein Sci 1997, 6, 1449–1457.

    Article  CAS  Google Scholar 

  10. Elöve, G. A.; Chaffotte, A. F.; Roder, H.; Goldberg, M. E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 1992, 31, 6876–6883.

    Article  Google Scholar 

  11. Clark, P. L.; Liu, Z.-P.; Zhang, J.; Gierasch, L. M. Intrinsic tryptophans of CRABPI as probes of structure and folding. Protein Sci 1996, 5, 1108–1117.

    Article  CAS  Google Scholar 

  12. Kim, K.-S.; Fuchs, J. A.; Woodward, C. K. Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry 1993, 32, 9600–9608.

    Article  CAS  Google Scholar 

  13. Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Detection of transient protein folding populations by mass spectrometry. Science 1993, 262, 896–900.

    Article  CAS  Google Scholar 

  14. Yang, H. H.; Smith, D. L. Kinetics of cytochrome c folding examined by hydrogen exchange mass spectrometry. Biochemistry 1997, 36, 14992–14999.

    Article  CAS  Google Scholar 

  15. Heidary, D. K.; Gross, L. A.; Roy, M.; Jennings, P. A. Evidence for an obligatory intermediate in the folding of interleukin-1.beta. Nature Struct. Biol. 1997, 4, 725–731.

    Article  CAS  Google Scholar 

  16. Zhang, Z.; Li, W.; Li, M.; Logan, T. M.; Guan, S.; Marshall, A. G. High-order structure and dynamics of FK506-binding protein probed by backbone amide hydrogen/deuterium exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Tech. Protein Chem. VIII 1997, 703–713.

  17. Englander, S. W.; Mayne, L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 243–265.

    Article  CAS  Google Scholar 

  18. Zhang, Z.; Post, C. B.; Smith, D. L. Amide hydrogen exchange determined by mass spectrometry: Application to rabbit muscle aldolase. Biochemistry 1996, 35, 779–791.

    Article  CAS  Google Scholar 

  19. Zhang, Z.; Smith, D. L. Thermal-induced unfolding domains in aldolase identified by amide hydrogen exchange and mass spectrometry. Protein Sci 1996, 5, 1282–1289.

    Article  CAS  Google Scholar 

  20. Gamblin, S. J.; Cooper, B.; Millar, J. R.; Davies, G. J.; Littlechild, J. A.; Watson, H. C. The crystal structure of human muscle aldolase at 3.0 A resolution. FEBS Lett 1990, 262, 282–286.

    Article  CAS  Google Scholar 

  21. Sygusch, J.; Beaudry, D.; Allaire, M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc. Natl. Acad. Sci. USA 1987, 84, 7846–7850.

    Article  CAS  Google Scholar 

  22. Bai, Y. W.; Milne, J. S.; Mayne, L.; Englander, S. W. Protein stability parameters measured by hydrogen exchange. Prot. Struct. Funct. Genet. 1994, 20, 4–14.

    Article  CAS  Google Scholar 

  23. Miller, D. W.; Dill, K. A. A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci 1995, 4, 1860–1873.

    Article  CAS  Google Scholar 

  24. Smith, D. L.; Deng, Y.; Zhang, Z. Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J. Mass Spectrom. 1997, 32, 135–146.

    Article  CAS  Google Scholar 

  25. Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Primary structure effects on peptide group hydrogen exchange. Protein Struct. Funct. Genet. 1993, 17, 75–86.

    Article  CAS  Google Scholar 

  26. Englander, S. W.; Kallenbach, N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 1984, 16, 521–655.

    Article  Google Scholar 

  27. Milne, J. S.; Mayne, L.; Roder, H.; Wand, A. J.; Englander, S. E. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci 1998, 7, 739–745.

    Article  CAS  Google Scholar 

  28. Engen, J. R.; Smithgall, T. E.; Gmeiner, W. H.; Smith, D. L. Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry. Biochemistry 1997, 36, 14384–14391.

    Article  CAS  Google Scholar 

  29. Engen, J. R.; Smithgall, T. E.; Gmeiner, W. H.; Smith, D. L. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: The role of protein dynamics in functional regulation. J. Mol. Biol. 1999, 287, 645–656.

    Article  CAS  Google Scholar 

  30. Loftus, D.; Gbenle, G.; Kim, P. S.; Baldwin, R. L. Effects of denaturants on amide proton exchange rates: A test for structure in protein fragments and folding intermediates. Biochemistry 1986, 25, 1428–1436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Zhang, Z. & Smith, D.L. Comparison of continuous and pulsed labeling amide hydrogen exchange/mass spectrometry for studies of protein dynamics. J Am Soc Mass Spectrom 10, 675–684 (1999). https://doi.org/10.1016/S1044-0305(99)00038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(99)00038-0

Keywords

Navigation