Skip to main content
Log in

Fourier transform ion cyclotron resonance study of multiply charged aggregates of small singly charged peptides formed by electrospray ionization

  • Short Communication
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Aggregates of singly protonated peptides formed with a nanoelectrospray ion source have been observed in the gas phase using Fourier transform ion cyclotron resonance (FT-ICR). Employment of “soft” ion sampling conditions in the source, which were developed previously to generate water clusters of biomolecules, provides significant yields of aggregates of singly protonated GGDPG ([2GGDPG + 2H]2+), GGEPG ([2GGEPG + 2H]2+), and VEPIPY (2VEPIPY + 2H]2+). With peptide mixtures, heteroaggregates, e.g., [GGDPG + GGEPG + 2H]2+ have also been observed along with the homoaggregates. These weakly bound noncovalent complexes undergo facile exothermic dissociation into the corresponding singly protonated monomer species with normal operation of the electrospray ion source. For example, the aggregates were not observed in FT-ICR experiments utilizing a conventional electrospray ionization (ESI) or fast atom bombardment source or with a quadrupolar ion trap mass spectrometer equipped with a conventional ESI source. The formation and metastability of these aggregates are dependent on highly specific intermolecular hydrogen bonding between the monomers. The amino acid sequence (DPG) of GGDPG mimics the well-known β reverse turn of proteins and semiempirical calculations show that it provides excellent hydrogen bonding sites for a protonated N-terminus amino group. Support for this conjecture is provided by the failure to observe aggregate formation of singly protonated peptides with several larger peptides, including hexaglycine and hexaalanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Barber, M.; Boddoli, R. D.; Sedgwick, R. D.; Tyler, A. N. J. Chem. Soc. Chem. Commun. 1981, 325.

  2. Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53.

    Article  CAS  Google Scholar 

  3. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A.

    Google Scholar 

  4. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64.

    Article  CAS  Google Scholar 

  5. McLuckey, S. A. J. Am. Soc. Mass Spectrom. 1992, 3, 599.

    Article  CAS  Google Scholar 

  6. Marzluff, E. M.; Beauchamp, J. L. In Large Ions: Their Vaporization, Detection and Structural Analysis; Baer, T., Powis, I., Ng, C. Y., Eds.; Wiley Series on Ion Chemistry and Physics: New York, 1996; p115.

    Google Scholar 

  7. Lee, S.-W.; Kim, H. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1998, 120, 3188.

    Article  CAS  Google Scholar 

  8. Mabud, MD. A.; Dekrey, M. J.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1985, 67, 285.

    Article  CAS  Google Scholar 

  9. Ijames, C. F.; Wilkins, C. L. Anal. Chem. 1990, 62, 1295.

    Article  CAS  Google Scholar 

  10. Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Anal. Chem. 1994, 66, 2809.

    Article  CAS  Google Scholar 

  11. Price, W. D.; Schnier, P. D.; Williams, E. R. Anal. Chem. 1996, 68, 859.

    Article  CAS  Google Scholar 

  12. Dunbar, R. C.; McMahon, T. B. Science 1998, 279, 194.

    Article  CAS  Google Scholar 

  13. Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 1993, 90, 790.

    Article  CAS  Google Scholar 

  14. Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. J. Am. Chem. Soc. 1992, 114, 5897.

    Article  CAS  Google Scholar 

  15. Valentine, S. J.; Clemmer, D. E. J. Am. Chem. Soc. 1997, 119, 3558.

    Article  CAS  Google Scholar 

  16. Ranasinghe, A.; Cooks, R. G.; Sethi, S. K. Org. Mass Spectrom. 1992, 27, 77.

    Article  CAS  Google Scholar 

  17. Ganem, B.; Li, Y.-T.; Henion, J. D. J. Am. Chem. Soc. 1991, 113, 6294.

    Article  CAS  Google Scholar 

  18. Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1991, 113, 8534.

    Article  CAS  Google Scholar 

  19. Light-Wahl, K. J.; Schwartz, B. L.; Smith, R. D. J. Am. Chem. Soc. 1994, 116, 5271.

    Article  CAS  Google Scholar 

  20. Bayer, E.; Batker, T.; Schmeer, K.; Bleicher, K.; Maler, M.; Baus, H.-J. Anal. Chem. 1994, 66, 3858.

    Article  CAS  Google Scholar 

  21. Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M. J. Am. Chem. Soc. 1996, 118, 8646.

    Article  CAS  Google Scholar 

  22. Loo, J. A.; Sannes-Lowery, K. A. In Mass Spectrometry of Biological Materials; Larsen, B. S.; McEwen, C. N., Eds.; Dekker: New York, 1998; p 345.

    Google Scholar 

  23. Counterman, A. E.; Valentine, S. J.; Srebalus, C. A.; Henderson, S. C.; Hoaglund, C. S.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 1998, 9, 743.

    Article  CAS  Google Scholar 

  24. Zhan, D.; Rosell, J.; Fenn, J. B. J. Am. Soc. Mass Spectrom. 1998, 9, 1242.

    Article  Google Scholar 

  25. Marzluff, E. M.; Lee, S.-W.; Beauchamp, J. L., unpublished.

  26. Rodgers, M. T.; Campbell, S.; Marzluff, E. M.; Beauchamp, J. L. Int. J. Mass Spectrom. Ion Processes 1994, 137, 121.

    Article  CAS  Google Scholar 

  27. Lee, S.-W.; Freivogel, P.; Schindler, T.; Beauchamp, J. L. J. Am. Chem. Soc. 1998, 120, 11758.

    Article  CAS  Google Scholar 

  28. Creighton, T. E. Proteins — Structures and Molecular Properties, 2nd ed.; W. H. Freeman: New York, 1993, p 225.

    Google Scholar 

  29. HyperChem Computational Chemistry Software Package, Version 4. 5, Hypercube, Inc., 1995.

  30. Gross, D. S.; Rodriguez-Cruz, S. E.; Bock, S.; Williams, E. R. J. Phys. Chem. 1995, 99, 4034. The coulomb repulsion may well be overestimated by setting the dielectric constant to 1, considering the dielectric media between the charge sites of the aggregates in the particular case.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Beauchamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.W., Beauchamp, J.L. Fourier transform ion cyclotron resonance study of multiply charged aggregates of small singly charged peptides formed by electrospray ionization. J Am Soc Mass Spectrom 10, 347–351 (1999). https://doi.org/10.1016/S1044-0305(98)00162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00162-7

Keywords

Navigation