Skip to main content
Log in

Nanoelectrospray—More than just a minimized-flow electrospray ionization source

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The comparison between electrospray ionization (ESI) mass spectra from NaCl solutions with and without analyte obtained under ionspray and nanospray conditions reveals different mass spectral behavior of the two ESI techniques. This can be attributed to the different initial droplet sizes which are in the µm range for ionspray, while in nanospray they are believed to be about one order of magnitude smaller. In the context of the widely accepted uneven-fission model, nanospray would then enter one fission generation later; in addition, a higher initial droplet surface charge density in nanospray results in early fissions without extensive evaporation and thus increase in sample and salt concentration. This rationalizes that ionspray spectra closely resemble nanospray spectra from solutions with about one order of magnitude higher salt concentrations, showing a higher tolerance of nanospray towards salt contamination. When the analyte is a peptide (in a solution containing a high molar surplus of salt), molecule ion formation effectively competes with salt cluster ion formation; when the analyte is a sugar, it is detectable beside a high salt concentration only with nanospray, indicating the supporting effect of surface activity on ion release in the case of peptides. A model is presented which explains the different mass spectral behaviour of ionspray and nanospray by suggesting different “predominant fission pathways” depending on the size of the initial droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kebarle, P.; Tang, L. Anal. Chem. 1993, 65, 972A-986A.

    Article  CAS  Google Scholar 

  2. Iribarne, J. V.; Thomson, B. A. J. Chem. Phys. 1976, 64, 2287–2294.

    Article  CAS  Google Scholar 

  3. Thomson, B. A.; Iribarne, J. V. J. Chem. Phys. 1979, 71, 4451–4463.

    Article  CAS  Google Scholar 

  4. Meng, C. K.; Mann, M.; Fenn, J. B. Z. Phys. D 1988, 10, 361–368.

    Article  CAS  Google Scholar 

  5. Nohmi, T.; Fenn, J. B. J. Am. Chem. Soc. 1992, 114, 3241–3246.

    Article  CAS  Google Scholar 

  6. Fenn, J. B. J. Am. Soc. Mass Spectrom. 1993, 4, 524–535.

    Article  CAS  Google Scholar 

  7. Ikonomou, M. G.; Blades, A. T.; Kebarle, P. Anal. Chem. 1989, 63, 1989–1998.

    Article  Google Scholar 

  8. Tang, L.; Kebarle, P. Anal. Chem. 1993, 65, 3654–3668.

    Article  CAS  Google Scholar 

  9. Sakairi, M.; Yergey, A. L.; Siu, K. W. M.; LeBlanc, J. C. Y.; Guevremont, R.; Berman, S. S. Anal. Chem. 1991, 63, 1488–1490.

    Article  CAS  Google Scholar 

  10. Guevremont, R.; Siu, K. W. M.; LeBlanc, J. C. Y.; Berman, S. S. J. Am. Soc. Mass Spectrom. 1992, 3, 216–224.

    Article  CAS  Google Scholar 

  11. Siu, K. W. M.; Guevremont, R.; LeBlanc, J. C. Y.; O’Brien, R. T.; Berman, S. S. Org. Mass Spectrom. 1993, 28, 579–584.

    Article  CAS  Google Scholar 

  12. Wang, G.; Cole, R. B. Org. Mass Spectrom. 1994, 29, 419–427.

    Article  CAS  Google Scholar 

  13. Wang, G.; Cole, R. B. Anal. Chem. 1994, 66, 3702–3708.

    Article  CAS  Google Scholar 

  14. Wang, G.; Cole, R. B. Anal. Chem. 1995, 67, 2892–2900.

    Article  CAS  Google Scholar 

  15. Winger, B. E.; Light-Wahl, K. J.; Ogorzalek Loo, R. R.; Udseth, H. R.; Smith, R. D. J. Am. Soc. Mass Spectrom. 1993, 4, 536–545.

    Article  CAS  Google Scholar 

  16. Schmelzeisen-Redeker, G.; Bütfering, L.; Röllgen, F. W. Int. J. Mass Spectrom. Ion Processes 1989, 90, 139–150.

    Article  CAS  Google Scholar 

  17. Wilm, M. S.; Mann, M. Int. J. Mass Spectrom Ion Processes 1994, 136, 167–180.

    Article  CAS  Google Scholar 

  18. Wilm, M. S.; Mann, M. Anal. Chem. 1996, 68, 1–8.

    Article  CAS  Google Scholar 

  19. Bahr, U.; Pfenninger, A.; Karas, M.; Stahl, B. Anal. Chem. 1997, 69, 4530–4535.

    Article  CAS  Google Scholar 

  20. Zhou, S.; Hamburger, M. Rapid Commun. Mass Spectrom. 1996, 10, 797–800.

    Article  CAS  Google Scholar 

  21. Martin, T. P. Phys. Rep. 1983, 95, 167–199.

    Article  CAS  Google Scholar 

  22. Fernandez de la Mora, F.; Loscertales, I. G. J. Fluid Mechanics 1992, 243, 561–574.

    Article  CAS  Google Scholar 

  23. Conway, B. E. Elektrochemische Tabellen; Govi-Verlag GmbH: Frankfurt, 1957; p 45.

    Google Scholar 

  24. CRC Handbook of Chemistry and Physics, 76th ed. CRC Press; Boca Raton, 1995.

  25. Röllgen, F. W.; Dülcks, Th.; Lüttgens, U.; Juraschek, R. Talk given at the 7th Sanibel Conference 1995, Sanibel Island, FL.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dülcks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juraschek, R., Dülcks, T. & Karas, M. Nanoelectrospray—More than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10, 300–308 (1999). https://doi.org/10.1016/S1044-0305(98)00157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00157-3

Keywords

Navigation