Skip to main content
Log in

Molecular structure of silsesquioxanes determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to deduce the three-dimensional structure of a complex silsesquioxane polymer. Four distinct levels of structure were observed in the mass spectrum. The overall shape of the peak distribution was typical of polymers formed by condensation reactions. The mass separation between major clusters of peaks, each major cluster corresponding to an oligomer with a unique number of repeat units, confirmed that the synthesis proceeded as expected with no side reactions. The mass separation between peaks within a major cluster showed that intramolecular reactions during synthesis resulted in the elimination of water. The loss of water was ascribed to the formation of closed loops in the polymer structure. A simple arithmetic algorithm is presented for identifying these peaks. Autocorrelation techniques were used to determine the number and distribution of intramolecular closed loops per oligomer. This knowledge was used to deduce whether a particular oligomer is branched-linear, ladder, polyhedral, or some combination of these. The single-oligomer isotopic distribution was used to determine that cationization was present from both sodium and potassium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409–1430.

    Article  CAS  Google Scholar 

  2. Voronkov, M. G.; Lavrent’yev, V. I. In Inorganic Ring Systems Boschke, F. L., Ed.; Springer: Berlin, 1982; pp 199–236.

    Google Scholar 

  3. Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J. Macromolecules 1993, 26, 2141–2142.

    Article  CAS  Google Scholar 

  4. Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Macromolecules 1995, 28, 8435–8437.

    Article  CAS  Google Scholar 

  5. Sellinger, A.; Laine, R. M. Macromolecules 1996, 29, 2327–2330.

    Article  CAS  Google Scholar 

  6. Zhang, C.; Laine, R. M. J. Organomet. Chem. 1996, 521, 199–201.

    Article  CAS  Google Scholar 

  7. Sellinger, A.; Laine, R. M. Chem. Mater. 1996, 8, 1592–1593.

    Article  CAS  Google Scholar 

  8. Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302–7304.

    Article  CAS  Google Scholar 

  9. Crivello, J. V.; Malik, R. J. Polym. Sci.: Part A: Polym. Chem. 1997, 35, 407–425.

    Article  CAS  Google Scholar 

  10. Antonucci, J. M.; Fowler, B. O.; Stansbury, J. W. ACS Polym. Preprints 1997, 38, 118–119.

    CAS  Google Scholar 

  11. Pan, Q.; Gonzalez, G. B.; Composto, R. J.; Wallace, W. E.; Arkles, B.; Figge, L. K.; Berry, D. H., Thin Solid Films, in press.

  12. Gentle, T. E. In Rapid Thermal and Integrated Processing Moslehi, M. M.; Singh, R.; Kwong, D. L., Ed.; SPIE: Bellingham, WA, 1991; pp 146–164.

    Google Scholar 

  13. Hacker, N. P. MRS Bull 1997, 22(10), 33–38.

    CAS  Google Scholar 

  14. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J. Chem. Mater. 1996, 8, 1250–1259.

    Article  CAS  Google Scholar 

  15. Gilman, J. W.; Kashiwagi, T.; Harris, R. H.; Lomakin, S.; Lichtenhan, J. D.; Bolf, A.; Jones, P. Proc. Additives98 Conf., in press.

  16. Agaskar, P. A.; Klemperer, W. G. Inorg. Chim. Acta 1995, 229, 355–364.

    Article  CAS  Google Scholar 

  17. Belu, A. M.; DeSimone, J. M.; Linton, R. W.; Lange, G. W.; Friedman, G. W. J. Am. Soc. Mass Spectrom. 1996, 7, 11–24.

    Article  CAS  Google Scholar 

  18. Hensel, R. R.; King, R. C.; Owens, K. G. Rapid Commun. Mass Spectrom. 1997, 11, 1785–1793.

    Article  CAS  Google Scholar 

  19. Certain commercial equipment is identified in this article in order to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the items identified are necessarily the best available for the purpose.

  20. McEwen, C. N.; Jackson, C.; Larsen, B. S. Int. J. Mass Spectrom. Ion Processes 1997, 160, 387–394.

    Article  CAS  Google Scholar 

  21. Birdi, K. S. Fractals in Chemistry, Geochemistry, and Biophysics: An Introduction; Plenum: New York, 1993, Chap 8.

    Google Scholar 

  22. Owens, K. G. Appl. Spectrosc. Rev. 1992, 27, 1–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, W.E., Guttman, C.M. & Antonucci, J.M. Molecular structure of silsesquioxanes determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 10, 224–230 (1999). https://doi.org/10.1016/S1044-0305(98)00147-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00147-0

Keywords

Navigation