Skip to main content
Log in

Sites of reaction of pilocarpine

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Analysis of the sites of reaction of a biologically important compound, pilocarpine, a molecule with imidazole and butyrolactone rings connected by a methylene bridge, has been accomplished in a quadrupole ion trap with the aim of characterizing its structure/reactivity relationships. Ion-molecule reactions of pilocarpine with chemical ionizing agents, dimethyl ether (DME), 2-methoxyethanol, and trimethyl borate (TMB), along with collision-activated dissociation elucidated the reaction sites of pilocarpine and made possible the comparison of structural features that affect sites of reaction. Based on MS/MS experiments, methylation occurs on the imidazole ring upon reactions with CH3OCH +2 or (CH3OCH2CH2OH)H+ ions but methylation occurs on the lactone ring for reactions with (CH3O)2B+ ions. Bracketing experiments with two model compounds, α-methyl-γ-butyrolactone and N-methyl imidazole, show the imidazole ring to have a greater gas-phase basicity and methyl cation affinity than the lactone ring. The contrast of methylation by TMB ions on the lactone ring is explained by initial addition of the dimethoxyborinium ion, (CH3O)2B+, on the imidazole ring with subsequent collisional activation promoting an intramolecular transfer of a methyl group to the lactone ring with concurrent loss of CH3OBO. Semiempirical molecular orbital calculations are undertaken to further address the favored reaction sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, E. J.; Brodbelt, J. S. Selective Ion-Molecule Reactions of Ether Reagent Ions with Nucleoside Antibiotics in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1995, 30, 625–631.

    CAS  Google Scholar 

  2. Luna, A.; Amekraz, B.; Morizur, J.-P.; Tortajada, J.; Mo, O.; Yanez, M. Reactions between Guanidine and Cu+ in the Gas Phase. An Experimental and Theoretical Study. J. Phys. Chem. A 1997, 101, 5931–5941.

    Article  CAS  Google Scholar 

  3. Camara, E.; Green, M. K.; Penn, S. G.; Lebrilla, C. B. Chiral Recognition is Observed in the Deprotonation Reaction of Cytochrome c by (2R)- and (2S)-2-Butylamine. J. Am. Chem. Soc. 1996, 118, 8751–8752.

    Article  CAS  Google Scholar 

  4. Stephenson, J. L.; McLuckey, S. A. Ion/Ion Proton Transfer Reactions for Protein Mixture Analysis. Anal. Chem. 1996, 68, 4026–4032.

    Article  CAS  Google Scholar 

  5. Alvarez, E. J.; Vartanian, V. H.; Brodbelt, J. S. Metal Complexation Reactions of Quinolone Antibiotics in a Quadrupole Ion Trap. Anal. Chem. 1997, 69, 1147–1155.

    Article  CAS  Google Scholar 

  6. Colorado, A.; Brodbelt, J. Class-Selective Collisionally Activated Dissociation/Ion-Molecule Reactions of 4-Quinolone Antibiotics. Anal. Chem. 1994, 66, 2330–2335.

    Article  CAS  Google Scholar 

  7. Alvarez, E. J.; Brodbelt, J. S. Evaluation of Metal Complexation as an Alternative to Protonation for Electrospray Ionization of Pharmaceutical Compounds. J. Am. Soc. Mass Spectrom. 1998, 9, 463–472.

    Article  CAS  Google Scholar 

  8. Orlando, R.; Murphy, C.; Fenselau, C.; Hansen, G.; Cotter, R. J. Endothermic Ion-Molecule Reactions: Strategies for Tandem Mass Spectrometric Structural Analyses of Large Biomolecules. Anal. Chem. 1990, 62, 125–129.

    Article  CAS  Google Scholar 

  9. Orlando, R.; Fenselau, C.; Cotter, R. J. Endothermic Ion-Molecule Reactions. 4. Site-Directed Fragmentation in N-Acetylated Oligosaccharides at Low Beam Energies. Anal. Chem. 1990, 62, 2388–2390.

    Article  CAS  Google Scholar 

  10. Dongre’, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency. Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365–8374.

    Article  Google Scholar 

  11. Cheng, X.; Bakhtiar, R.; Van Orden, S.; Smith, R. D. Charge-State Shifting of Individual Multiply-Charged Ions of Bovine Albumin Dimer and Molecular Weight Determination Using an Individual-Ion Approach. Anal. Chem. 1994, 66, 2084–2087.

    Article  CAS  Google Scholar 

  12. Gross, D. S.; Williams, E. R. Experimental Measurement of Coulomb Energy and Intrisic Dielectric Polarizability of a Multiply Protonated Peptide Ion Using Electrospray Ionization Fourier-Transform Mass Spectrometry. J. Am. Chem. Soc. 1995, 117, 883–890.

    Article  CAS  Google Scholar 

  13. Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas-Phase Proteins via H/D Isotopic Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.

    Article  CAS  Google Scholar 

  14. Gard, E.; Kirk Green, M.; Bregar, J.; Lebrilla, C. B. Gas-Phase Hydrogen/Deuterium Exchange as a Molecular Probe for the Interaction of Methanol and Protonated Peptides. J. Am. Soc. Mass Spectrom. 1994, 5, 623–631.

    Article  CAS  Google Scholar 

  15. Wood, T. D.; Chorush, R. A.; Wampler, F. M. III; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Gas-phase folding and unfolding of cytochrome c cations. Proc. Natl. Acad. Sci. USA 1995, 92, 2451–2454.

    Article  CAS  Google Scholar 

  16. Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840–12854.

    Article  CAS  Google Scholar 

  17. Gur, E. H.; deKoning, L. J.; Nibbering, N. M. M. The Bimolecular Hydrogen-Deuterium Exchange Behavior of Protonated Alkyl Dipeptides in the Gas Phase. J. Am. Soc. Mass Spectrom. 1995, 6, 466–477.

    Article  CAS  Google Scholar 

  18. Goodman and Gilman’s The Pharmacological Basis of Therapeutics Ninth Edition; Hardman, J. G.; Limbird, L. E.; Goodman Gilman, A., Eds.; McGraw-Hill: New York, 1996; p 146.

    Google Scholar 

  19. Brodbelt, J.; Liou, C. C.; Donovan, T. Selective Adduct Formation by Dimethyl Ether Chemical Ionization in a Quadrupole Ion Trap Mass Spectrometer and a Conventional Ion Source. Anal. Chem. 1991, 63, 1205–1209.

    Article  CAS  Google Scholar 

  20. Keough, T. Dimethyl Ether as a Reagent Gas for Organic Functional Group Determination by Chemical Ionization Mass Spectrometry. Anal. Chem. 1982, 54, 2540–2547.

    Article  CAS  Google Scholar 

  21. Burrows, E. Dimethyl Ether Chemical Ionization Mass Spectrometry. Mass. Spec. Rev. 1995, 14, 107–115.

    Article  CAS  Google Scholar 

  22. Suming, H.; Yaozu, C.; Longfei, J.; Shuman, X. Stereochemical Effects in Mass Spectrometry. 2-Chemical Ionization Mass Spectra of Some Cyclic Glycols and Mono- and Disaccharides Using Trimethyl Borate as Reagent Gas. Org. Mass Spectrom. 1985, 20, 719–723.

    Article  CAS  Google Scholar 

  23. Leeck, D. T.; Ranatunga, T. D.; Smith, R. L.; Partanen, T.; Vainiotalo, P.; Kenttamaa, H. I. Differentiation of stereoisomeric diols by using CH3OB+OCH3 in a small Fourier transform ion cyclotron resonance mass spectrometer. Int. J. Mass Spectrom. Ion Processes 1995, 141, 229–240.

    Article  CAS  Google Scholar 

  24. Colorado, A.; Brodbelt, J. Borinium Adduct Ion Formation with Barbiturates in a Quadrupole Ion-trap Mass Spectrometer. J. Mass Spectrom. 1996, 31, 403–410.

    Article  CAS  Google Scholar 

  25. Kempen, E. C.; Brodbelt, J. Use of Trimethyl Borate as a Chemical Ionization Reagent for the Analysis of Biologically Active Molecules. J. Mass Spectrom. 1997, 32, 846–854.

    Article  CAS  Google Scholar 

  26. Bauerle, G. F.; Hall, B. J.; Tran, N. V.; Brodbelt, J. Ion-Molecule Reactions of Oxygenated Chemical Ionization Reagents with Vincamine. J. Am. Soc. Mass Spectrom. 1995, 7, 250–260.

    Article  Google Scholar 

  27. Alvarez, E. J.; Brodbelt, J. S. Selective Ion-Molecule Reactions of Ether Reagent Ions with Nucleoside Antibiotics in a Quadrupole Ion Trap. J. Mass Spectrom. 1995, 30, 625–631.

    Article  CAS  Google Scholar 

  28. Hunter, E. P. and Lias, S. G. Proton Affinity Evaluation In NIST Standard Reference Database Number 69, Mallard, W. G.; Lindstrom, P. J. Eds.; National Institute of Standards and Technology: Gaithersburg, MD, August 1997 (http://webbook.nist.gov).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Brodbelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satterfield, M., Brodbelt, J.S. Sites of reaction of pilocarpine. J Am Soc Mass Spectrom 10, 209–216 (1999). https://doi.org/10.1016/S1044-0305(98)00141-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00141-X

Keywords

Navigation