Skip to main content
Log in

Realistic simulation of the ion cyclotron resonance mass spectrometer using a distributed three-dimensional particle-in-cell code

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

This work describes an Internet accessible three-dimensional particle-in-cell simulation code, which is capable of near first principles modeling of complete experimental sequences in Fourier transform ion cyclotron resonance mass spectrometers. The graphical user interface is a Java client that communicates via a socket stream connection over the Internet to the computational engine, a server that executes the simulation and sends real-time particle data back to the client for display. As a first demonstration, this code is applied to the problem of the cyclotron motion of two very close mass to charge ratios at high ion density. The ion populations in these simulations range from 50,000 to 350,000 coulombically interacting particles confined in a cubic trap, which are followed for 100,000 time-steps. Image charge, coherent cyclotron positions, and snapshots of the ion population are recorded at selected time-steps. At each time-step in the simulation the potential (coulomb + image + trap) is found by the direct solution of Poisson’s equation on a 64×64×64 computational grid. Cyclotron phase locking is demonstrated at high number density. Simulations at different magnetic fields confirm a B2 dependence for the minimum number density required to lock cyclotron modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J.; Tiedemann, P. W.; Land, D. P.; McIver, R. T.; Hemminger, J. C. Int. J. Mass Spectrom. Ion Processes 1994, 134, 11–21.

    Article  CAS  Google Scholar 

  2. Naito, Y.; Inoue, M. J. Mass Spectrom. Soc. Jpn. 1994, 42, 1–9.

    CAS  Google Scholar 

  3. Pasa-Tolic, L.; Huang, Y.; Guan, S.; Kim, H. S.; Marshall, A. G. J. Mass Spectrom. 1995, 30, 825–833.

    Article  CAS  Google Scholar 

  4. Anderson, J. S.; Laude, D. A. Int J. Mass Spectrom. Ion Processes 1996, 158, 163–174.

    Article  Google Scholar 

  5. Stults, J. T. Anal. Chem. 1997, 69, 1815–1819.

    Article  CAS  Google Scholar 

  6. Peurrung, A. J.; Kouzes, R. T. Phys. Rev. E 1994, 49, 4362–4368.

    Article  CAS  Google Scholar 

  7. Mitchell, D. W.; Smith, R. D. Phys. Rev. E 1995, 52, 4366–4386.

    Article  CAS  Google Scholar 

  8. Mitchell, D. W.; Smith, R. D. J. Mass Spectrom. 1996, 31, 771–790.

    Article  CAS  Google Scholar 

  9. Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 25, 282–283.

    Article  CAS  Google Scholar 

  10. Comisarow, M. B. J. Chem. Phys. 1978, 69, 4097–4104.

    Article  CAS  Google Scholar 

  11. Marshall, A. G.; Verdun, F. R. Fourier Transforms in NMR, Optical and Mass Spectrometry: A User’s Handbook; Elsevier: Amsterdam, 1990.

    Google Scholar 

  12. Marshall, A. G.; Grosshans, P. B. Anal. Chem. 1991, 63, 215A.

    Google Scholar 

  13. Asamoto, B.; Dunbar,, R. C. Analytical Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry; VCH: New York, 1991.

    Google Scholar 

  14. Comisarow, M. B. Adv. Mass Spectrom. 1980, 8, 1698–1706.

    Google Scholar 

  15. Comisarow, M. B. Int. J. Mass Spectrom. Ion Processes 1981, 37, 251–257.

    Article  CAS  Google Scholar 

  16. Grosshans, P. B.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1990, 100, 347–379.

    Article  CAS  Google Scholar 

  17. Guan, S.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 261–296.

    Article  CAS  Google Scholar 

  18. Dienes, T.; Pastor, J.; Schurch, S.; Scott, J. R.; Cui, S.; Wilkens, C. L. Mass Spectrom. Rev. 1996, 15, 161–211.

    Article  Google Scholar 

  19. Jeffries, J. B.; Barlow, S. E.; Dunn, G. H. Int. J. Mass Spectrom. Ion Processes 1983, 54, 169–187.

    Article  CAS  Google Scholar 

  20. Chen, S.-P.; Comisarow, M. B. Rapid Commun. Mass Spectrom. 1991, 5, 450–455.

    Article  CAS  Google Scholar 

  21. Chen, S.-P.; Comisarow, M. B. Rapid Commun. Mass Spectrom. 1992, 6, 1–3.

    Article  Google Scholar 

  22. Gorshkov, M. V.; Marshall, A. G.; Nikolaev, E. N. J. Am. Soc. Mass Spectrom. 1993, 4, 855–868.

    Article  CAS  Google Scholar 

  23. Herold, L. K.; Kouzes, R. T. Int. J. Mass Spectrom. Ion Processes 1990, 96, 275–289.

    Article  CAS  Google Scholar 

  24. Hearn, B. A.; Watson, C. H.; Baykut, G.; Eyler, J. R. Int. J. Mass Spectrom. Ion Processes 1990, 95, 299–316.

    Article  CAS  Google Scholar 

  25. Xiang, X.; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1994, 5, 238–249.

    Article  CAS  Google Scholar 

  26. Guan, S.; Pasa-Tolic, L.; Marshall, A. G.; Xiang, X. Int. J. Mass Spectrom. Ion Processes 1994, 139, 75–86.

    Article  CAS  Google Scholar 

  27. Naito, Y.; Inoue, M. Rapid Commun. Mass Spectrom. 1997, 11, 578–586.

    Article  CAS  Google Scholar 

  28. Londry, F. A.; Alfred, R. L.; March, R. E. J. Am. Soc. Mass Spectrom. 1993, 4, 687–705.

    Article  CAS  Google Scholar 

  29. Julian, R. K.; Nappi, M.; Weil, C.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 1995, 6, 57–70.

    Article  CAS  Google Scholar 

  30. Dahl, D. A. Simion 3D Version 6. 0 User’s Manual, 1995.

  31. Wang, T.-C. L.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1986, 68, 287–301.

    Article  CAS  Google Scholar 

  32. Uechi, G. T.; Dunbar, R. C. J. Am. Soc. Mass Spectrom. 1992, 3, 734–741.

    Article  CAS  Google Scholar 

  33. Peurrung, A. J.; Kouzes, R. T. Int. J. Mass Spectrom. Ion Processes 1995, 145, 139–153.

    Article  CAS  Google Scholar 

  34. Miluchihin, N. V.; Miura, K.; Inoue, M. Rapid Commun. Mass Spectrom. 1993, 7, 966–970.

    Article  CAS  Google Scholar 

  35. Nikolaev, E. N.; Miluchihin, N. V.; Inoue, M. Int. J. Mass Spectrom. Ion Processes 1995, 148, 145–157.

    Article  CAS  Google Scholar 

  36. Han, S.-J.; Shin, S. K. J. Am. Soc. Mass Spectrom. 1996, 8, 319–326.

    Article  Google Scholar 

  37. Mitchell, D. W.; Smith, R. D. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 271–297.

    Article  CAS  Google Scholar 

  38. Birdsall, C. K.; Langdon,, A. B. Plasma Physics via Computer Simulation; McGraw-Hill: New York, 1985.

    Google Scholar 

  39. Hockney, R. W.; Eastwood,, J. W. Computer Simulation Using Particles; Adam Hilger: New York, 1988.

    Google Scholar 

  40. Birdsall, C. K. IEEE Trans. Plasma Sci. 1991, 19, 65–85.

    Article  CAS  Google Scholar 

  41. Brillouin, L. Phys. Rev. 1945, 67, 260–266.

    Article  Google Scholar 

  42. Guo-Zhong, Li; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1998, 9, 473–481.

    Article  Google Scholar 

  43. Lee, J. P.; Chow, K. H.; Comisarow, M. B. Anal. Chem. 1988, 60, 2212–2218.

    Article  CAS  Google Scholar 

  44. Chow, K. H.; Comisarow, M. B. Int. J. Mass Spectrom. Ion Processes 1989, 89, 187–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale W. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, D.W. Realistic simulation of the ion cyclotron resonance mass spectrometer using a distributed three-dimensional particle-in-cell code. J Am Soc Mass Spectrom 10, 136–152 (1999). https://doi.org/10.1016/S1044-0305(98)00130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00130-5

Keywords

Navigation