Skip to main content
Log in

Gas phase conformations of biological molecules: the hydrogen/deuterium exchange mechanism

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

A model was developed to describe the deuterium uptake of gas phase polypeptide ions via H/D exchange with D2O. Ab initio calculations established, for energetic reasons, that the exchange must take place via a “relay” mechanism involving both a charged site and a nearby basic site. Molecular dynamics simulations indicated that the D2O molecule did not penetrate the core of the example peptide, protonated bradykinin (Bk+H)+, and hence the relay mechanism must occur on the peptide surface. Two factors were deemed to be important: (1) The surface accessibility of the charged sites and the basic sites and (2) the distances between them. An algorithm was developed that accounted for these features using the absolute exchange rate as a free parameter. Excellent agreement was obtained with experiment when equal weight was given to an ensemble of low energy conformations of (Bk+H)+, assumed to have a salt bridge primary structure. Single conformations, or other protonated forms, did not allow good agreement with experiment for any value of the absolute exchange rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monaghan, J. J.; Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. Org. Mass Spectrom. 1983, 18, 75, 1982, 17, 569, 1982, 17, 529.

    Article  CAS  Google Scholar 

  2. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, A1193.

    Google Scholar 

  3. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Mass Spectrom. Rev. 1990, 9, 37.

    Article  CAS  Google Scholar 

  4. Englander, S. W.; Kallenbach, N. R. Q. Rev. Biophys. 1983, 16, 521.

    Article  CAS  Google Scholar 

  5. Smith, D. L.; Zhang, Z. Mass Spectrom. Rev. 1994, 13, 411.

    Article  CAS  Google Scholar 

  6. Green, M. K. Lebrilla, C. B. Mass Spectrom. Rev. 1997, 16, 53.

    Article  CAS  Google Scholar 

  7. Covey, T.; Douglas, D. J. J. Am. Soc. Mass Spectrom. 1993, 4, 616.

    Article  CAS  Google Scholar 

  8. Cox, K. A.; Julian, R. K.; Cooks, R. G.; Kaiser, R. E. J. Am. Soc. Mass Spectrom. 1994, 5, 127.

    Article  CAS  Google Scholar 

  9. Ganem, B.; Li, Y.-T.; Henion, J. D. J. Am. Chem. Soc. 1991, 113, 6294.

    Article  CAS  Google Scholar 

  10. Cheng, X.; Chen, R.; Bruce, J. E.; Schwartz, B. L.; Anderson, G. A.; Hofstadler, S. A.; Gale, D. C.; Smith, R. D.; Gao, J.; Sigal, G. B.; Mammen, M.; Whitesides, G. M. J. Am. Chem. Soc. 1995, 117, 8859.

    Article  CAS  Google Scholar 

  11. Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1995, 117, 10141.

    Article  CAS  Google Scholar 

  12. von Helden, G.; Wyttenbach, T.; Bowers, M. T. Science 1995, 267, 1483.

    Article  Google Scholar 

  13. Sullivan, P. A.; Axelsson, J.; Altmann, S.; Quist, A. P.; Sunqvist, B. U. R.; Reimann, C. T. J. Am. Soc. Mass Spectrom. 1996, 7, 329.

    Article  CAS  Google Scholar 

  14. Gross, D. S.; Williams, E. R. J. Am. Chem. Soc. 1995, 117, 883.

    Article  CAS  Google Scholar 

  15. Kaltashov, I. A.; Fenselau, C. Proteins: Structure Function Genetics 1997, 27, 165.

    Article  CAS  Google Scholar 

  16. Dongre, A. R.; Somogyi, A.; Wysocki, V. H. J. Mass Spectrom. 1996, 31, 339.

    Article  CAS  Google Scholar 

  17. Katta, V.; Chait, B. T. Rapid Commun. Mass Spectrom. 1991, 5, 214.

    Article  CAS  Google Scholar 

  18. J. Am. Chem. Soc. 1993, 115, 6317.

  19. Smith, D. L.; Deng, Y.; Zhang, Z. J. Mass Spectrom. 1997, 32, 135.

    Article  CAS  Google Scholar 

  20. Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Science 1993, 262, 896.

    Article  CAS  Google Scholar 

  21. Johnson, R. S.; Walsh, K. A. Prot. Sci. 1994, 3, 2411.

    Article  CAS  Google Scholar 

  22. Wagner, D. S.; Melton, L. G.; Yan, Y.; Erickson, B. W.; Anderegg, R. J. Protein Sci. 1994, 3, 1305.

    Article  CAS  Google Scholar 

  23. Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. J. Am. Chem. Soc. 1992, 114, 5897.

    Article  CAS  Google Scholar 

  24. Cheng, X.; Fenselau, C. Int. J. Mass Spectrom. Ion Processes 1992, 122, 109.

    Article  CAS  Google Scholar 

  25. Hemling, M. E.; Conboy, J. J.; Bean, M. F.; Mentzer, M.; Carr, S. A. J. Am. Soc. Mass Spectrom. 1994, 5, 434.

    Article  CAS  Google Scholar 

  26. Wood, T. D.; Chorush, R. A.; Wampler, F. M., III; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 1995, 92, 2451.

    Article  CAS  Google Scholar 

  27. Clemmer, D. E.; Valentine, S. J. J. Am. Chem. Soc. 1997, 119, 3558.

    Article  Google Scholar 

  28. Zhang, X; Ewing, N; Cassady C. J. Int. J. Mass Spectrom. Ion Processes, submitted.

  29. Kemper, P. R.; Bowers, M. T. J. Phys. Chem. 1991, 95, 5134.

    Article  CAS  Google Scholar 

  30. Wyttenbach, T.; von Helden, G.; Bowers, M. T. J. Am. Chem. Soc. 1996, 118, 8355.

    Article  CAS  Google Scholar 

  31. Zhang, Z.; Li, W.; Guan, S.; Marshall, A. G. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 1061.

  32. Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Chem. Rev. 1994, 94, 2161.

    Article  CAS  Google Scholar 

  33. Recent results obtained at the National High Magnetic Field Laboratory in Florida indicate that thermal (300 K) protonated bradykinin exposed to 10−5 torr D2O vapor does not exchange any hydrogens at all during the course of a 1 h experiment. Although this result is obtained under more controlled experimental conditions than those reported here, it is of course useless for obtaining any structural information or testing an H/D exchange model. Freitas, M. A.; Marshall, A. G., private communication.

  34. Schnier, P. D.; Price, W. D.; Jokusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1996, 118, 7178.

    Article  CAS  Google Scholar 

  35. Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1995, 117, 12840.

    Article  CAS  Google Scholar 

  36. Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.

    Article  CAS  Google Scholar 

  37. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    Article  CAS  Google Scholar 

  38. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comp. Chem. 1993, 14, 1347.

    Article  CAS  Google Scholar 

  39. gaussian 94, Revision C. 2, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Jonson, B. G.; Robb, M. A.; Cheesman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. F.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 1995.

  40. Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Seibel, G. L.; Singh, U. C.; Weiner, P.; Kollman, P. A. amber 4. 0, Unversity of California, San Francisco.

  41. The dielectric constant is often chosen to be proportional to 1/r implying that the potential energy between two charges q 1 and q 2 separated by r is E POT(r) α q 1 q 2/r 2. See, e. g., [18].

  42. von Helden, G.; Wyttenbach, T.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 349.

    Article  Google Scholar 

  43. Lee, S.; Wyttenbach, T.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1997, 167, 605.

    Article  Google Scholar 

  44. Wyttenbach, T.; Bushnell, J. E.; Bowers, M. T. J. Am. Chem. Soc. 1998, 120, 5098.

    Article  CAS  Google Scholar 

  45. Gidden, J.; Jackson, A. T.; Sceivens, J. H.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes, submitted.

  46. On the basis of results reported in [12] simulations have been carried out on salt bridge structures arg1H+-arg9H+-COO.

  47. Gard, E.; Green, M. K.; Bregar, J.; Lebrilla, C. B. J. Am. Soc. Mass Spectrom. 1994, 5, 623.

    Article  CAS  Google Scholar 

  48. Marshall, A. G.; Zhang, Z., private communication.

  49. In order to determine the deuterium incorporation as shown in Figure 3 and deconvolute the mass spectra from the 12C/13C isotope distributions the maximum entropy method has been applied: Zhan, Z.; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1997, 8, 659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Bowers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyttenbach, T., Bowers, M.T. Gas phase conformations of biological molecules: the hydrogen/deuterium exchange mechanism. J Am Soc Mass Spectrom 10, 9–14 (1999). https://doi.org/10.1016/S1044-0305(98)00121-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00121-4

Keywords

Navigation