Skip to main content
Log in

Reduction of copper(II) complexes by electron capture in an electrospray ionization source

  • Short Communication
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The relative proportion of 1:1 Cu(I)– and Cu(II)–peptide complexes PeptCu(I)+ and [Pept−H+Cu(II)]+ yielded by electrospray ionization of copper sulfate and GlyHisLys solutions in water/methanol was examined under different source conditions. Two factors leading to an increase in Cu(I) complex ratio were found. (1) Increase of nozzle–skimmer voltages caused collision-induced dissociation of Cu(II) complexes, and most probably favor ligand-to-metal electron transfers that result in the decoordination of oxydated ligands to form PeptCu+. (2) Independent of these “innersphere” processes that involve only electron exchange inside the coordination sphere around the metal cation, an increase in source voltages with a concomitant increase of current and, supposedly, electron counterflow between the counterelectrode and the capillary caused an increase in PeptCu+ relative proportion. The hypothesis that an “outersphere” electron capture might happen in these conditions was verified by using discharge supressing SF6 gas as nebulizing gas. The electronegative gas reduced the current brought on by high voltages and inhibited the PeptCu+ increase phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ikonomou, M. G.; Blades, A. T.; Kebarle, P. Anal. Chem. 1990, 62, 957–967.

    Article  CAS  Google Scholar 

  2. Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Anal. Chem. 1991, 63, 2109–2114.

    Article  CAS  Google Scholar 

  3. Ikonomou, M. G.; Blades, A. T.; Kebarle, P. Anal. Chem. 1991, 63, 1989–1998.

    Article  CAS  Google Scholar 

  4. Iribarne, J. V.; Thomson, B. A. J. Chem. Phys. 1976, 64, 2287–2294.

    Article  CAS  Google Scholar 

  5. Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Anal. Chem. 1992, 64, 1586–1593.

    Article  Google Scholar 

  6. Van Berkel, G. J. In Electrospray Ionization Mass Spectrometry; R. B. Cole, Ed.; Wiley: Chichester, 1997; pp. 65–105.

    Google Scholar 

  7. Van Berkel, G. J.; Zhou, F. Anal. Chem. 1995, 67, 2916–2923.

    Article  Google Scholar 

  8. Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Anal. Chem. 1991, 63, 1098–1109.

    Article  Google Scholar 

  9. Xu, X.; Nolan, S. P.; Cole, R. B. Anal. Chem. 1994, 66, 119–125.

    Article  CAS  Google Scholar 

  10. Xu, X.; Lu, W.; Cole, R. B. Anal. Chem. 1996, 68, 4244–4253.

    Article  CAS  Google Scholar 

  11. Lu, W.; Xu, X.; Cole, R. B. Anal. Chem. 1997, 69, 2478–2484.

    Article  CAS  Google Scholar 

  12. Lavanant, H.; Hecquet, E.; Hoppilliard, Y. Int. J. Mass Spectrom., to be published.

  13. Gatlin, C. L.; Turecek, F.; Vaisar, T. Anal. Chem. 1994, 66, 3950–3958.

    Article  CAS  Google Scholar 

  14. Vaisar, T.; Gatlin, C. L.; Turecek, F. J. Am. Chem. Soc. 1996, 118, 5314–5315.

    Article  CAS  Google Scholar 

  15. Vaisar, T.; Gatlin, C. L.; Turecek, F. Int. J. Mass Spectrom. Ion Processes 1997, 162, 77–87.

    Article  CAS  Google Scholar 

  16. Xu, Y.; Zhang, X.; Yergey, A. L. J. Am. Soc. Mass. Spectrom. 1995, 7, 25–29.

    Article  Google Scholar 

  17. Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P. Int. J. Mass Spectrom. Ion Processes 1990, 102, 251–267.

    Article  CAS  Google Scholar 

  18. Roepstorff, P.; Fohlmann, J. Biomed. Mass Spectrom. 1984, 11, 601–602.

    Article  CAS  Google Scholar 

  19. Dahl, D. A.; Delmore, J. E. SIMION V. 4. 0, U. S. Department of Energy, Idaho Falls, 1988.

    Google Scholar 

  20. Goldmann, M.; A., G. In Gaseous Electronics; Hirsh, M. N.; Oskam, H. J., Ed.; Academic: London, 1978; Vol. 1, 219–290.

    Google Scholar 

  21. Ingold, J. H. In Gaseous Electronics; Hirsh, M. N.; Oskam, H. J., Ed.; Academic: London, 1978; Vol. 1, p 19–64.

    Google Scholar 

  22. Lias, S. G.; Bartness, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.

    Google Scholar 

  23. Gatlin, C. L.; Turecek, F.; Vaisar, T. J. Mass Spectrom. 1995, 30, 775–777.

    Article  CAS  Google Scholar 

  24. Wen, D.; Yalcin, T.; Harrison, A. G. Rapid Commun. Mass Spectrom. 1995, 9, 1155–1157.

    Article  CAS  Google Scholar 

  25. Dean, L. K. L.; Busch, K. L. Org. Mass Spectrom. 1989, 24, 733–736.

    Article  CAS  Google Scholar 

  26. Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1995, 117, 9734–9739.

    Article  CAS  Google Scholar 

  27. Luna, A.; Amekraz, B.; Morizur, J.-P.; Tortajada, J.; Mó, O.; Yáñez, M. J. Phys. Chem. A 1997, 101, 5931–5941.

    Article  CAS  Google Scholar 

  28. Grade, H.; Cooks, R. G. J. Am. Chem. Soc. 1978, 100, 5615–5621.

    Article  CAS  Google Scholar 

  29. Lavanant, H.; Hoppilliard, Y. J. Mass Spectrom. 1997, 32, 1037–1049.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannik Hoppilliard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavanant, H., Virelizier, H. & Hoppilliard, Y. Reduction of copper(II) complexes by electron capture in an electrospray ionization source. J Am Soc Mass Spectrom 9, 1217–1221 (1998). https://doi.org/10.1016/S1044-0305(98)00100-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00100-7

Keywords

Navigation