Skip to main content
Log in

Quantitation of ion abundances in fourier transform ion cyclotron resonance mass spectrometry

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

To improve the analytical usefulness of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), an extensive survey of various methods for quantitation of peak magnitudes has been undertaken using a series of simulated transient response signals with varying signal-to-noise ratio. Both peak height (five methods) and peak area (four methods) were explored for a range of conditions to determine the optimum methodology for quantitation. Variables included dataset size, apodization function, damping constant, and zero filling. Based on the results obtained, recommended procedures for optimal quantitation include: apodization using a function appropriate for the peak height ratios observed in the spectrum (i.e., Hanning for ratios of about 1:10, three-term Blackman-Harris for ratios of ∼1:100, or Kaiser-Bessel for ratios of ∼1:1000); zero filling until the peaks of interest are represented by 10–15 points (generally obtained with one order of zero filling); and use of the polynomial y=(ax 2+bx+c)n and the three data points of highest intensity of the peak to locate the peak maximum, Y max=(−b 2/4a+c)n. In this peak fitting procedure, which we have termed the “Comisarow method,” n is 5.5, 9.5, and 12.5 for the Hanning, three-term Blackman-Harris, and Kaiser-Bessel apodization functions, respectively. Accuracy of quantitation using an optimal peak height determination is about equal to that for peak area measurements. These recommendations were found to be valid when tested with real FTICR-MS spectra of xenon isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassady, C. J.; Carr, S. R. J. Mass Spectrom. 1996, 31, 247–254.

    Article  CAS  Google Scholar 

  2. Wu, Q. Y.; Vanorden, S.; Cheng, X. H.; Bakhtiar, R.; Smith, R. D. Anal. Chem. 1995, 67, 2498–2509.

    Article  CAS  Google Scholar 

  3. O’Connor, P. B.; Little, D. P.; McLafferty, F. W. Anal. Chem. 1996, 68, 542–545.

    Article  Google Scholar 

  4. Speir, J. P.; Amster, I. J. J. Am. Soc. Mass Spectrom. 1995, 6, 1069–1078.

    Article  CAS  Google Scholar 

  5. Sannes, K. A.; Brauman, J. I. J. Phys. Chem. 1996, 100, 7471–7479.

    Article  CAS  Google Scholar 

  6. Rodgers, M. T.; Campbell, S.; Marzluff, E. M.; Beauchamp, J. L. Int. J. Mass Spectrom. Ion Processes 1995, 148, 1–23.

    Article  CAS  Google Scholar 

  7. Cody, R. B.; Freiser, B. S. Anal. Chem. 1982, 54, 1431–1433.

    Article  CAS  Google Scholar 

  8. White, R. L.; Onyiriuka, E. C.; Wilkins, C. L. Anal. Chem. 1983, 55, 339.

    Article  CAS  Google Scholar 

  9. Stockigt, D.; Schwarz, J.; Schwarz, H. J. Phys. Chem. 1996, 100, 8786–8790.

    Article  Google Scholar 

  10. Aarstol, M.; Comisarow, M. B. Int. J. Mass Spectrom. Ion Processes 1987, 76, 287–297.

    Article  CAS  Google Scholar 

  11. Lee, J. P.; Comisarow, M. B. Appl. Spectrosc. 1987, 41, 93–98.

    Article  CAS  Google Scholar 

  12. Lee, J. L.; Chow, K. H.; Comisarow, M. B. Anal. Chem. 1988, 60, 2212–2218.

    Article  CAS  Google Scholar 

  13. Brenna, J. T.; Creasy, W. R. Int. J. Mass Spectrom. Ion Processes 1989, 90, 151–166.

    Article  CAS  Google Scholar 

  14. Mitchell, D. W.; DeLong, S. E. Int. J. Mass Spectrom. Ion Processes 1990, 96, 1–16.

    Article  CAS  Google Scholar 

  15. Lee, J. L.; Comisarow, M. B. Appl. Spectrosc. 1989, 43, 599–604.

    Article  CAS  Google Scholar 

  16. Chen, L.; Cottrell, C. E.; Marshall, A. G. Chemometr. Intelligent Lab. Syst. 1986, 1, 51–58.

    Article  CAS  Google Scholar 

  17. Comisarow, M. B.; Melka, J. D. Anal. Chem. 1979, 51, 2198–2207.

    Article  CAS  Google Scholar 

  18. Liang, Z.; Marshall, A. G. Anal. Chem. 1990, 62, 70–75.

    Article  CAS  Google Scholar 

  19. Serreqi, A.; Comisarow, M. B. Appl. Spectrosc. 1987, 41, 288–295.

    Article  Google Scholar 

  20. Filler, A. S. J. Opt. Soc. Am. 1964, 54, 762–767.

    Article  Google Scholar 

  21. Keefe, C. D.; Comisarow, M. B. Appl. Spectrosc. 1990, 44, 600–613.

    Article  CAS  Google Scholar 

  22. Watson, C. H.; Goodner, K. L.; Eyler, J. R. 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 1191.

  23. CRC Handbook of Chemistry and Physics, 71st ed.; Lide, D. R., Ed.; CRC: Boca Raton, FL, 1990; pp A34-A35.

    Google Scholar 

  24. Skoog, D. A.; Leary, J. J. Principles of Instrumental Analysis; Harcourt Brace Jovanovich: New York, 1992; 53–54.

    Google Scholar 

  25. Guan, S.; Li, G. Z.; Marshall, A. G. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 493.

  26. Cooley, J. W.; Tukey, J. W. Math. Comput. 1965, 19, 297.

    Article  Google Scholar 

  27. Kolman, B. Elementary Linear Algebra, 4th Edition; Macmillan: New York, 1998; p 34.

    Google Scholar 

  28. Marshall, A. G.; Guan, S. Rapid Commun. Mass Spectrom. 1996, 10, 1819–1823.

    Article  CAS  Google Scholar 

  29. Bartholdi, E.; Ernst, R. R. J. Magn. Reson. 1973, 11, 9–19.

    CAS  Google Scholar 

  30. Marshall, A. G. Anal. Chem. 1979, 51, 1710–1714.

    Article  CAS  Google Scholar 

  31. McIver, R. T., Jr.; Hunter, R. L.; Baykut, G. Anal. Chem. 1989, 61, 489–491.

    Article  CAS  Google Scholar 

  32. Wang, M.; Marshall, A. G. Anal. Chem. 1989, 61, 1288–1293.

    Article  CAS  Google Scholar 

  33. Mitchell, D. W.; Smith, R. D. J. Mass Spectrom. 1996, 31, 771–790.

    Article  CAS  Google Scholar 

  34. Goodner, K. L. Ph. D. Thesis, University of Florida, 1996; Figure 5. 8.

  35. Yang, Y.; Linnert, H. V.; Riveros, J. M.; Williams, K. R.; Eyler, J. R. J. Phys. Chem. A 1997, 101, 2371–2378.

    Article  CAS  Google Scholar 

  36. Application of relative sensitivity factors in glow discharge–FTICR mass spectrometry was discussed in Barshick, C. M.; Eyler, J. R. J. Am. Soc. Mass Spectrom. 1992, 3, 122–127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Eyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodner, K.L., Milgram, K.E., Williams, K.R. et al. Quantitation of ion abundances in fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 9, 1204–1212 (1998). https://doi.org/10.1016/S1044-0305(98)00090-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00090-7

Keywords

Navigation