Skip to main content
Log in

Exploring infrared wavelength matrix-assisted laser desorption/ionization of proteins with delayed-extraction time-of-flight mass spectrometry

  • Focus: Maldi
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

We report a study of the application of delayed extraction (DE) to infrared-wavelength matrix-assisted time-of-flight mass spectrometry (IR-MALDI-TOF-MS) of proteins. The shapes of the spectral peaks obtained with DE-IR-MALDI-MS are compared with those obtained from the same samples and matrix using continuous extraction (CE) IR-MALDI-MS. Application of DE results in significant improvements in the peak resolution, revealing spectral features (in proteins with molecular masses <12 kDa) that were not resolved in the corresponding CE-IR-MALDI mass spectra. Particularly significant is a series of peaks on the high mass side of the protonated protein peaks that arise through replacement of protons by adventitious sodium ions in the sample. We deduced that these sodium replacement species are a significant contributer to the broad tails (and resulting peak asymmetries) that are a feature of the DE-IR-MALDI mass spectra of proteins with molecular masses ≥17 kDa. The peak width reduction observed in IR-MALDI by DE suggests that, as in UV-MALDI, the initial velocity distribution for ions produced in the MALDI process contributes to the peak broadness in the CE mass spectra. In a systematic comparison between DE UV-MALDI and DE IR-MALDI, we determined that photochemical matrix adduction is present in UV-MALDI but absent in IR-MALDI. In addition, we find that protein ions produced by IR irradiation are less internally excited (i.e., cooler), exhibiting less fragmentation, more Na+ replacement and/or unspecified noncovalent adduction, and more heme adduction with apomyoglobin. Thus, IR-MALDI appears to be a softer means for producing gas-phase protein ions than is UV-MALDI. It will be of considerable practical interest to determine whether large protein ions produced by IR-MALDI are sufficiently cool to survive transport through reflecting TOF mass spectrometers (without loss of small neutral species such as H2O, NH3, and CO2) and the extended time periods required for detection by quadrupole ion trap and Fourier transform ion cyclotron resonance mass analyzers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.

    Article  CAS  Google Scholar 

  2. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151.

    Article  CAS  Google Scholar 

  3. Beavis, R. C.; Chait, B. T. Rapid Commun. Mass Spectrom. 1989, 3, 233.

    Article  CAS  Google Scholar 

  4. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A.

    Google Scholar 

  5. Chait, B. T.; Kent, S. B. Science 1992, 257, 1885.

    Article  CAS  Google Scholar 

  6. Stults, J. T. Curr. Opin. Struct. Biol. 1995, 5, 691.

    Article  CAS  Google Scholar 

  7. Beavis, R. C.; Chait, B. T. Methods Enzymol. 1996, 270, 519.

    Article  CAS  Google Scholar 

  8. Overberg, A.; Karas, M.; Bahr, U.; Kaufmann, R.; Hillenkamp, F. Rapid Commun. Mass Spectrom. 1990, 4, 293.

    Article  CAS  Google Scholar 

  9. Overberg, A.; Karas, M.; Hillenkamp, F. Rapid Commun. Mass Spectrom. 1990, 5, 128.

    Article  Google Scholar 

  10. Eckerskorn, C.; Strupat, K.; Karas, M.; Hillenkamp, F.; Lottspeich, F. Electrophoresis 1992, 13, 664.

    Article  CAS  Google Scholar 

  11. Strupat, K.; Karas, M.; Hillenkamp, F.; Eckerskorn, C.; Lottspeich, F. Anal. Chem. 1994, 66, 464.

    Article  CAS  Google Scholar 

  12. Hillenkamp, F.; Karas, M.; Berkenkamp, S. Proceedings of the 43th ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, 1995; p 357.

  13. Berkenkamp, S.; Karas, M.; Hillenkamp, F. Proc. Natl. Acad. Sci. USA 1996, 93, 7003.

    Article  CAS  Google Scholar 

  14. Cramer, R.; Hillenkamp, F.; Haglund, R. F. J. Am. Soc. Mass Spectrom. 1996, 7, 1187.

    Article  CAS  Google Scholar 

  15. Sutton, C. W.; Wheeler, C. H.; Sally, U.; Corbett, J. M.; Cottrell, J. S.; Dunn, M. J. Electrophoresis 1997, 18, 424.

    Article  CAS  Google Scholar 

  16. Eckerskorn, C.; Strupat, K.; Schleuder, D.; Hochstrasser, D.; Sanchez, J.-C.; Lottspeich, F.; Hillenkamp, F. Anal. Chem. 1997, 69, 2888.

    Article  CAS  Google Scholar 

  17. Caldwell, K. L.; McGarity, D. R.; Murray, K. K. J. Mass Spectrom. 1997, 32, 1374.

    Article  Google Scholar 

  18. Sadeghi, M.; Olumee, Z.; Tang, X.; Vertes, A.; Jiang, Z. X.; Henderson, A. J.; Lee, H. S.; Prasad, C. R. Rapid Commun. Mass Spectrom. 1997, 11, 393.

    Article  CAS  Google Scholar 

  19. Nelson, R. W.; Rainbow, M. J.; Lohr, D. E.; Williams, P. Science 1989, 246, 1585.

    Article  CAS  Google Scholar 

  20. Niu, S.; Zhang, W.; Chait, B. T. J. Am. Soc. Mass Spectrom. 1998, 9, 1.

    Article  CAS  Google Scholar 

  21. Beavis, R. C.; Chait, B. T. Chem. Phys. Lett. 1991, 181, 479.

    Article  CAS  Google Scholar 

  22. Verentchikov, A.; Ens, W.; Martens, J.; Standing, K. G. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics; Washington, D. C., 1992; p 360.

  23. Boekelman, V.; Spengler, B.; Kaufmann, R. Eur. Mass Spectrom. 1995, 1, 81.

    Article  Google Scholar 

  24. Juhasz, P.; Vestal, M. L.; Martin, S. A. J. Am. Soc. Mass Spectrom. 1997, 8, 209.

    Article  CAS  Google Scholar 

  25. Colby, S. M.; King, T. B.; Reilly, J. P. Rapid Commum. Mass Spectrom. 1994, 8, 865.

    Article  CAS  Google Scholar 

  26. Brown, R. S.; Lennon, J. J. Anal. Chem. 1995, 67, 1998.

    Article  CAS  Google Scholar 

  27. Whittal, R. M.; Li, L. Anal. Chem. 1995, 67, 1950.

    Article  CAS  Google Scholar 

  28. Vestal, M. L.; Juhasz, P.; Martin, S. A. Rapid Commun. Mass Spectrom. 1995, 9, 1044.

    Article  CAS  Google Scholar 

  29. Bahr, U.; Stahl-Zeng, J.; Gleitsmann, E.; Karas, M. J. Mass Spectrom. 1997, 32, 1111.

    Article  CAS  Google Scholar 

  30. Berkenkamp, S.; Menzel, C.; Karas, M.; Hillenkamp, F. Rapid Commun. Mass Spectrom. 1997, 11, 1399.

    Article  CAS  Google Scholar 

  31. Beavis, R. C.; Chait, B.T. Methods and Mechanisms for Producing Ions from Large Molecules; Standing, K.G.; Ens, W., Eds.; Plenum: New York, 1991, p 227.

    Google Scholar 

  32. Macfarlane, R. D.; Torgerson, D. F. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 81.

    Article  CAS  Google Scholar 

  33. Continetti, R. E.; Cyr, D. R.; Neumark, D. M. Rev. Sci. Instrum. 1992, 63, 1840.

    Article  Google Scholar 

  34. Zhang, W.; Czernik, A. J.; Yungwirth, T.; Aebersold, R.; Chait, B. T. Protein Sci 1994, 3, 677.

    Article  CAS  Google Scholar 

  35. Beavis, R. C.; Chait, B. T. Rapid Commun. Mass Spectrom. 1989, 3, 432.

    Article  CAS  Google Scholar 

  36. Berkenkamp, S.; Menzel, C.; Rohling, U.; Strupat, K.; Hillenkamp, F.; Presented at the 14th International Mass Spectrometry Conference, Tampere, Finland, August 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Chait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Niu, S. & Chait, B.T. Exploring infrared wavelength matrix-assisted laser desorption/ionization of proteins with delayed-extraction time-of-flight mass spectrometry. J Am Soc Mass Spectrom 9, 879–884 (1998). https://doi.org/10.1016/S1044-0305(98)00060-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(98)00060-9

Keywords

Navigation