A perturbation molecular orbital theory of gas-phase dissociative electron-transfer rates

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Gasphase dissociative electron-transfer (ET) reactions are examined in the light of modern electron-transfer theory and a perturbation molecular orbital (PMO) model for ion-molecule collision rates. Two dissociative ET reactions reported by Knighton and Grimsrud—the reaction of azulene anion with dibromodifluoromethane and with carbon tetrachloride—happened in the inverted region of the relationship between reaction rate and free energy. Carbon-halogen vibration participation in dissociative ET reactions is demonstrated in two reaction series. Carbon-hydrogen stretch (3050 cm−1) activation of electron transfer happened in the most exothermic reaction series: dissociative capture to form bromide from bromotrichloromethane The reasons for the failure of classical ion-molecule collision theory to give a quantitative account of reactive ion-molecule collision rates are presented in some detail. The fundamental failure is a result of a previously unappreciated change in the polarizability of a molecule when the orbitals on the molecule overlap with those on an adjacent ion. The molecular orbital-based collision model used here avoids the need to evaluate the changes in the polarizability tensor with overlap.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Marcus, R. A. Angew. Chem. Int. Ed. Engl. 1993, 32, 1111.

    Article  Google Scholar 

  2. 2.

    Marcus, R. A.; Sutin, N. Biochem. Biophys. Acta 1985, 811, 256.

    Google Scholar 

  3. 3.

    Sutin, N. Prog. Inorg. Chem. 1983, 30, 441.

    Article  CAS  Google Scholar 

  4. 4.

    Closs, G. L.; Miller, J. R. Science 1988, 240, 440.

    Article  CAS  Google Scholar 

  5. 5.

    Closs, G. L.; Calcatera, L. T.; Green, N. J.; Penfield, K. W.; Miller, J. R. J. Phys. Chem. 1986, 90, 3673.

    Article  CAS  Google Scholar 

  6. 6.

    Ohno, T.; Yoshimura, A.; Mataga, N.; Tazuke, S.; Kawanishi, Y.; Kitamura, N. J. Phys. Chem. 1989, 93, 3546.

    Article  CAS  Google Scholar 

  7. 7.

    Dougherty, R. C., J. Chem. Phys., in press.

  8. 8.(a)

    Dougherty, R. C.; Xu, M. J. Am. Chem. Soc. 1996, 118, 9424;

    Article  CAS  Google Scholar 

  9. 8.(b)

    Xu, M.; Dougherty, R. C., unpublished.

  10. 9.

    Knighton, W. B.; Grimsrud, E. P. J. Am. Chem. Soc. 1992, 114, 2336.

    Article  CAS  Google Scholar 

  11. 10.(a)

    Su, T.; Bowers, M. T. Gas Phase Ion Chemistry, Vol. 1; Bowers,, M. T., Ed.; Academic: New York, 1979; pp 83–118;

    Google Scholar 

  12. 10.(b)

    Turulski, J.; Niedzielski, J. J. Mass Spectrom. Ion Processes 1994, 139, 155;

    Article  CAS  Google Scholar 

  13. 10.(c)

    Su, T. J. Chem. Phys. 1994, 100, 4703;

    Article  CAS  Google Scholar 

  14. 10.(d)

    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988;

    Google Scholar 

  15. 10.(e)

    Adams, N. G. In Atomic, Molecular and Optical Physics Handbook; Drake, G. F. W., Ed.; American Institute of Physics: Woodbury, NY, 1996; pp 441–449; and papers cited in these works.

    Google Scholar 

  16. 11.

    Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Bomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Steward, J. J. P.; Pople, J. A. Gaussian 92, Revision B; Gaussian, Inc.: Pittsburgh, PA, 1992.

    Google Scholar 

  17. 12.

    Marcus, R. A. J. Chem. Phys. 1956, 24, 966.

    Article  CAS  Google Scholar 

  18. 13.(a)

    Richardson, D. E. J. Phys. Chem. 1986, 90, 3697;

    Article  CAS  Google Scholar 

  19. 13.(b)

    Eyler, J. R.; Richardson, D. E. J. Am. Chem. Soc. 1985, 107, 6130;

    Article  CAS  Google Scholar 

  20. 13.(c)

    Richardson, D. E.; Christ, C. S.; Sharpe, P.; Eyler, J. R. J. Am. Chem. Soc. 1987, 109, 3894.

    Article  CAS  Google Scholar 

  21. 14.

    Wladkowski, B. D.; Brauman, J. I. J. Phys. Chem. 1993, 97, 13158.

    Article  CAS  Google Scholar 

  22. 15.(a)

    Fermi, E. Notes on Quantum Mechanics, 2nd ed.; University of Chicago Press: Chicago, IL, 1995; pp 99–102;

    Google Scholar 

  23. 15.(b)

    DeVault, D. Quantum-Mechanical Tunnelling in Biological Systems, 2nd ed.; Cambridge University Press: Cambridge, 1984; pp 129–134.

    Google Scholar 

  24. 16.(a)

    Staneke, P. O.; Groothuis, G.; Ingemann, S.; Nibbering, N. M. M. Int. J. Mass Spectrom. Ion Processes 1995, 142, 83;

    Article  CAS  Google Scholar 

  25. 16.(b)

    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. D. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1 (gas-phase ion and neutral thermochemistry).

  26. 17.

    Cox, J. D.; Wagman, D. D.; Medvedev, V. A. CODATA Key Values for Thermodynamics; Hemisphere: New York 1989.

    Google Scholar 

  27. 18.

    Davidson, N. Statistical Mechanics; McGraw-Hill: Cambridge, 1962.

    Google Scholar 

  28. 19.

    Mortimer, C. T. Reaction Heats and Bond Strengths; Pergamon Press: London, 1962.

    Google Scholar 

  29. 20.

    Lide, D. R., Ed. Handbook of Chemistry and Physics, 74th ed.; CRC: Boca Raton, FL, 1993.

    Google Scholar 

  30. 21.

    Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of Organic Chemistry; Plenum: New York, NY, 1975.

    Google Scholar 

  31. 22.

    Gioumousis, G.; Stevenson, D. P. J. Chem. Phys. 1958, 29, 294.

    Article  CAS  Google Scholar 

  32. 23.

    Su, T.; Bowers, M. T. J. Chem. Phys. 1973, 58, 3027.

    Article  Google Scholar 

  33. 24.

    Infrared Prism Collection; Sadtler Research Laboratories: New York, 1980.

  34. 25.

    Schrader, B. Raman/Infrared Atlas of Organic Compounds, 2nd ed., VCH: New York, 1989.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralph C. Dougherty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dougherty, R.C. A perturbation molecular orbital theory of gas-phase dissociative electron-transfer rates. J Am Soc Mass Spectrom 8, 510–518 (1997). https://doi.org/10.1016/S1044-0305(97)00004-4

Download citation

Keywords

  • Ally Topic
  • Fisons Instrument
  • Benzothiazepine
  • Molecular Weight Information
  • Bromotrichloromethane