Skip to main content
Log in

A tandem mass spectrometry and Fourier transform-ion cyclotron resonance study of ionized ethylated acetone and deuterated analogs

  • Articles
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The unimolecular dissociation of (CH3)2C+OC2H5 ions (I) and their deuterated analogs, generated by ion-molecule reactions (IMR) in acetone-ethyl iodide mixtures was studied by tandem mass Spectrometry methods. Two significant processes that yielded I ions were identified. The Fourier transform ion cyclotron resonance study showed that the reaction between ionized ethyl iodide and neutral acetone was the principal source of I. This process involved the formation of the stable mixed ionized dimer, [C2H5I·O=C(CH3)2] (II), which dissociated by the loss of an I atom. Other important fragmentation pathways of II were the formation of C2H5I, (CH3)2CO; and (CH3)2COI+ and the loss of CH3CHI·. The major dissociation of I was the loss of C2H4. The activation energy for this reaction was determined by metastable ion appearance energy measurements to be ∼55 kJ mol−1 above the thermochemical minimum. The analysis of the metastable and collision-induced dissociation of D-labeled I showed an unusual time-energy effect on the degree of H/D mixing, with the highest selectivity for the ethene loss [β-H(D)-atom shift] being observed for ions with the lowest internal energies. Collisional excitation could not produce significant H/D mixing among dissociating ions. The results were rationalized by the existence of two species— the classical (2-ethoxypropyl) and nonclassical (proton-bound acetone-ethene pair) isomers of I. The classical structure was originally formed by IMR or from II. The energy barrier for the classical to nonclassical isomerization lay well above the thermochemical threshold for C2H4 loss, providing only limited H-atom mixing in nonclassical ions that were always formed in their dissociative state. The effect of the proton affinity of the carbonyl compound on the H/D mixing in RR′C+OC2H5 ions was studied. It was shown that the selectivity for the ethene loss (β-H-atom shift) generally increased with the increase of the proton affinity of RR′CO. Neutralization-reionization mass spectrometry was applied to a study of (CH3)2C+OR ions, where R = H, I, C2H5. The observation of a recovery signal for the ion I was attributed to the formation of the 2-ethoxypropyl radical. Neutral counterparts of (CH3)2COI+ ions were also generated, being the first example of IO-substituted alkyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sirois, M.; George, M.; Holmes, J. L. Org. Mass Spectrom. 1994, 29, 11;

    Article  CAS  Google Scholar 

  2. Wesdemiotis, C.; Fura, A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 1991, 2, 459;

    Article  CAS  Google Scholar 

  3. Harrison, A. G. Org. Mass Spectrom. 1987, 29, 637;

    Article  Google Scholar 

  4. Jarrold, M. F.; Kirchner, J.; Liu, S.; Bowers, M. T. J. Phys. Chem. 1986, 90, 78.

    Article  CAS  Google Scholar 

  5. Zagorevskii, D. V.; Sirois, M.; Cao, J. R.; George, M.; Holmes, J. L.; Ross, C. W., III. J. Mass Spectrom. 1995, 31, 55.

    Article  Google Scholar 

  6. Bowen, R. D.; Derrick, P. J. J. Chem. Soc., Perkin Trans. 1992, 2, 1033.

    Google Scholar 

  7. Mead, T. J.; Williams, D. H. J. Chem. Soc., Perkin Trans. 1972, 2, 876.

    Google Scholar 

  8. Audier, H. E.; Monteiro, C.; Robin, D. Org. Mass Spectrom. 1989, 24, 146.

    Article  CAS  Google Scholar 

  9. Sirois, M. Ph. D. Thesis University of Ottawa, Ontario, Canada, 1993.

  10. Bouchoux, G.; Hoppilliard, Y. J. J. Am. Chem. Soc. 1990, 112, 9110;

    Article  CAS  Google Scholar 

  11. Swanton, D. J.; Marsden, D. C. J.; Radom, L. Org. Mass Spectrom. 1991, 26, 227.

    Article  CAS  Google Scholar 

  12. Bowen, R. D.; Stapleton, B. J.; Williams, D. H. J. Chem. Soc. Chem. Commun. 1978, 24;

  13. Bowen, R. D.; Williams, D. H. J. Am. Chem. Soc. 1980, 302, 2752;

    Article  Google Scholar 

  14. Bowen, R. D.; Williams, D. H. Int. J. Am. Chem. Soc. 1978, 100, 7454;

    Article  CAS  Google Scholar 

  15. Bowen, R. D.; Williams, D. H. Int. J. Mass Spectrom. Ion Phys. 1979, 29, 47.

    Article  CAS  Google Scholar 

  16. Traeger, J. C.; Mommers, A. A. Org. Mass Spectrom. 1987, 22, 592.

    Article  CAS  Google Scholar 

  17. Holmes, J. L.; Osborne, A. D. Int. J. Mass Spectrom. Ion Phys. 1977, 23, 189;

    Article  CAS  Google Scholar 

  18. Burgers, P. C.; Holmes, J. L. Org. Mass Spectrom. 1982, 17, 123.

    Article  CAS  Google Scholar 

  19. Marshall, A. G.; Wang, T.-C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893.

    Article  CAS  Google Scholar 

  20. Zagorevskii, D. V.; Palii, S. P.; Holmes, J. L. J. Am. Soc. Mass Spectrom. 1994, 5, 814.

    Article  CAS  Google Scholar 

  21. Zagorevskii, D. V.; Holmes, J. L. Org. Mass Spectrom. 1994, 29, 594.

    Article  CAS  Google Scholar 

  22. Lossing, F. P. J. Am. Chem. Soc. 1977, 99, 7526.

    Article  CAS  Google Scholar 

  23. Pottie, R. F.; Hamill, W. H. J. Phys. Chem. 1959, 63, 877.

    Article  CAS  Google Scholar 

  24. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Ref. Data 1988, 17, Suppl. 1.

    Google Scholar 

  25. Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1988, 110, 7344.

    Google Scholar 

  26. Livant, P.; Illies, A. J. Am. Chem. Soc. 1991, 113, 1510.

    Article  CAS  Google Scholar 

  27. Burgers, P. C.; Holmes, J. L. Int. J. Mass Spectrom. Ion Processes 1984, 58, 15.

    Article  CAS  Google Scholar 

  28. Harnish, D.; Holmes, J. L. J. Am. Chem. Soc. 1991, 113, 9729.

    Article  CAS  Google Scholar 

  29. Wagner, W.; Heimbach, H.; Levsen, K. Int. J. Mass Spectrom. Ion Phys. 1980, 36, 125.

    Article  CAS  Google Scholar 

  30. Burgers, P. C.; Holmes, J. L.; Szulejko, J. E.; Mommers, A. A.; Terlouw, J. K. Org. Mass Spectrom. 1983, 18, 254.

    Article  CAS  Google Scholar 

  31. Larson, J. W.; McMahon, T. B. J. Am. Chem. Soc. 1982, 204, 6255.

    Article  Google Scholar 

  32. Bowen, R. D.; Williams, D. H.; Hvistendahl, G.; Kalman J. R. Org. Mass Spectrom. 1978, 23, 721;

    Article  Google Scholar 

  33. McAdoo, D. J.; Akhmed, M. S.; Hudson, C. E.; Giam, C. S. Int. J. Mass Spectrom. Ion Processes 1990, 100, 579.

    Article  CAS  Google Scholar 

  34. Hvistendahl, G. J. Am. Chem. Soc. 1975, 97, 3097;

    Article  CAS  Google Scholar 

  35. Holmes, J. L.; Rye, R. T. B.; Terlouw, J. K. Org. Mass Spectrom. 14 1979, 606.

    Article  CAS  Google Scholar 

  36. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986, p 384 and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagorevskii, D.V., Holmes, J.L. & Ross, C.W. A tandem mass spectrometry and Fourier transform-ion cyclotron resonance study of ionized ethylated acetone and deuterated analogs. J Am Soc Mass Spectrom 8, 327–336 (1997). https://doi.org/10.1016/S1044-0305(96)00280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(96)00280-2

Keywords

Navigation