Alkali chloride cluster ion dissociation examined by the kinetic method: Heterolytic bond dissociation energies, effective temperatures, and entropic effects

Abstract

Branching ratios have been measured as a function of collision energy for the dissociation of mass-selected chloride-bound salt cluster ions, [Rb-35Cl-Mi]+, where Mi = Na, K, Cs. The extended version of the kinetic method was used to determine the heterolytic bond dissociation energy (HBDE) of Rb-Cl. The measured value of 480.8 ± 8.5 kJ/mol, obtained under single collision conditions, agrees with the HBDE value (482.0 ± 8.0 kJ/mol), calculated from a thermochemical cycle. The observed effective temperature of the collisionally activated salt clusters increases with laboratory-frame collision energy under both single- and multiple-collision conditions. Remarkably, the effective temperatures under multiple collision conditions are lower than those recorded under single-collision conditions at the same collision energy, a consequence of the inability of the triatomic ions to store significant amounts of internal energy. Laboratory-frame kinetic energy to internal energy transfer (T→V) efficiencies range from 3.8 to 13.5%. For a given cluster ion, the T→V efficiency decreases with increasing collision energy. Many features of the experimental results are accounted for using MassKinetics modeling (Drahos and Vékey, J. Mass Spectrom. 2001, 36, 237).

References

  1. 1.

    Franklin, J. L. Benchmark Papers in Physical Chemistry and Chemical Physics, No. 3: Ion-Molecule Reactions, Part. 1: Kinetics and Dynamics. Hutchinson and Ross, Inc.: Stroudsburg, 1979.

    Google Scholar 

  2. 2.

    Lias, S. G.; Ausloos, P. J. Am. Chem. Soc. 1977, 99, 4831–4833.

    CAS  Article  Google Scholar 

  3. 3.

    Gal, J.-F.; Maria, P.-C.; Raczynska, E. D. J. Mass Spectrom. 2001, 36, 699–716.

    CAS  Article  Google Scholar 

  4. 4.

    Alcamí, M.; Mó, O.; Yáñez, M. Mass Spectrom. Rev. 2001, 20, 195–245.

    Article  Google Scholar 

  5. 5.

    Cooks, R. G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279–1281.

    CAS  Article  Google Scholar 

  6. 6.

    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287–339.

    CAS  Article  Google Scholar 

  7. 7.

    Cooks, R. G.; Wong, P. S. H. Acc. Chem. Res. 1998, 31, 379–386.

    CAS  Article  Google Scholar 

  8. 8.

    Drahos, L.; Vékey, K. J. Mass Spectrom. 1999, 34, 79–84.

    CAS  Article  Google Scholar 

  9. 9.

    Craig, S. L.; Zhong, M.; Choo, B.; Brauman, J. I. J. Phys. Chem. A. 1997, 101, 5379.

    CAS  Article  Google Scholar 

  10. 10.

    Campbell, S.; Marzluff, E. M.; Rodgers, M. T.; Beauchamp, J. L.; Rempe, M. E.; Schwinck, K. F.; Lichtenberger, D. L. J. Am. Chem. Soc. 1994, 116, 5257–5264.

    CAS  Article  Google Scholar 

  11. 11.

    Ervin, K. M. Int. J. Mass Spectrom. 2000, 195/196, 271–284.

    CAS  Article  Google Scholar 

  12. 12.

    Laskin, J.; Futrell, J. H. J. Phys. Chem. A 2000, 104, 8829–8837.

    CAS  Article  Google Scholar 

  13. 13.

    Cooks, R. G.; Koskinen, J. T.; Thomas, P. D. J. Mass Spectrom. 1999, 34, 85–92.

    CAS  Article  Google Scholar 

  14. 14.

    Armentrout, P. B. J. Mass Spectrom. 1999, 34, 74–78.

    CAS  Article  Google Scholar 

  15. 15.

    Cheng, X. H.; Wu, Z. C.; Fenselau, C. J. Am. Chem. Soc. 1993, 115, 4844–4848.

    CAS  Article  Google Scholar 

  16. 16.

    Cerda, B. A.; Hoyau, S.; Ohanessian, G.; Wesdemiotis, C. J. Am. Chem. Soc. 1998, 120, 2437–2448.

    CAS  Article  Google Scholar 

  17. 17.

    Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1996, 118, 11884–11892.

    CAS  Article  Google Scholar 

  18. 18.

    Lardin, H. A.; Squires, R. R.; Wenthold, P. G. J. Mass Spectrom. 2001, 36, 607–615.

    CAS  Article  Google Scholar 

  19. 19.

    Wenthold, P. G. J. Am. Soc. Mass Spectrom. 2000, 11, 601–605.

    CAS  Article  Google Scholar 

  20. 20.

    Kuntz, A. F.; Boynton, A. W.; David, G. A.; Colyer, K. E.; Poutsma, J. C. J. Am. Soc. Mass Spectrom. 2002, 13, 72–81.

    CAS  Article  Google Scholar 

  21. 21.

    Pommerening, C. A.; Bachrach, S. M.; Sunderlin, L. S. J. Am. Soc. Mass Spectrom. 1999, 10, 856–861.

    CAS  Article  Google Scholar 

  22. 22.

    Ervin, K. M. J. Am. Soc. Mass Spectrom. 2002, 13, 435–452. 23.|Zheng, X.; Cooks, R. G. J. Phys. Chem. A, unpublished.

    CAS  Article  Google Scholar 

  23. 24.

    Chen, G.; Cooks, R. G. J. Mass Spectrom. 1997, 32, 1258–1261.

    CAS  Article  Google Scholar 

  24. 25.

    Wang, G.; Cole, R. B. J. Electron Spectrosc. Relat. Phenom. 2000, 108, 153–162.

    CAS  Article  Google Scholar 

  25. 26.

    Holmes, J. L. Org. Mass Spectrom. 1985, 20, 169–183.

    CAS  Article  Google Scholar 

  26. 27.

    Cooks, R. G.; Rockwood, A. L. Rapid Commun. Mass Spectrom. 1991, 5, 93.

    CAS  Google Scholar 

  27. 28.

    Drahos, L.; Vékey, K. J. Mass Spectrom. 2001, 36, 237–263.

    CAS  Article  Google Scholar 

  28. 29.

    Steinfeld, J.; Francisco, J.; Hase, W. Chemical Kinetics and Dynamics. Prentice-Hall: New Jersey, 1989, 308–393.

    Google Scholar 

  29. 30.

    Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics. Oxford University Press: New York, 1996, 171–282.

    Google Scholar 

  30. 31.

    Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions. John Wiley and Sons Ltd.: Bristol, 1972, 64–184.

    Google Scholar 

  31. 32.

    Oppenheim, I.; Shuler, K. E.; Weiss, G. H. Stochastic Processes in Chemical Physic: The Master Equation. M.I.T. Press: Cambridge, 1977.

    Google Scholar 

  32. 33.

    Thomas, P. D.; Cooks, R. G.; Vékey, K.; Drahos, L. J. Phys. Chem. A 2000, 104, 1359–1361.

    CAS  Article  Google Scholar 

  33. 34.

    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q. Gaussian 98 (Revision A). Gaussian Inc.: Pittsburgh, 1998.

    Google Scholar 

  34. 35.

    Balasubramanian, K. Relativistic Effects in Chemistry, Part A, B. Wiley: New York, 1997.

    Google Scholar 

  35. 36.

    Becke, A. D. Phys. Rev. A: Gen. Phys. 1988, 38, 3098–3100.

    CAS  Article  Google Scholar 

  36. 37.

    Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177.

    CAS  Article  Google Scholar 

  37. 38.

    Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785–789.

    CAS  Article  Google Scholar 

  38. 39.

    Dunning, J. T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., Ed., Plenum: New York, 1976.

    Google Scholar 

  39. 40.

    Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093–3100.

    CAS  Article  Google Scholar 

  40. 41.

    Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502–16513.

    CAS  Article  Google Scholar 

  41. 42.

    Miller, W. H. J. Phys. Chem. 1983, 87, 21–22.

    CAS  Article  Google Scholar 

  42. 43.

    Pechukas, P. Ann. Rev. Phys. Chem. 1981, 32, 159–177.

    CAS  Article  Google Scholar 

  43. 44.

    Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379–380.

    Article  Google Scholar 

  44. 45.

    Wigner, E. J. Chem. Phys. 1937, 5, 720–725.

    CAS  Article  Google Scholar 

  45. 46.

    Cooks, R. G. Collision Spectroscopy. Plenum Press: New York, 1978.

    Google Scholar 

  46. 47.

    Wolfgang, R. P.; Li, H.; Cooks, R. G. Int. J. Mass Spectrom., unpublished.

  47. 48.

    Chen, G.; Cooks, R. G.; Bunk, D. M.; Welch, M. J.; Christie, J. R. Int. J. Mass Spectrom. 1999, 185/186/187, 75–90.

    CAS  Google Scholar 

  48. 49.

    Kenttamaa, H. I.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1985, 52, 165–174.

    Google Scholar 

  49. 50.

    Vékey, K.; Brenton, A. G.; Beynon, J. H. Int. J. Mass Spectrom. Ion Processes 1986, 70, 277–300.

    Article  Google Scholar 

  50. 51.

    Lee, S. H.; Kim, M. S.; Beynon, J. H. Int. J. Mass Spectrom. Ion Processes 1987, 75, 83–89.

    CAS  Article  Google Scholar 

  51. 52.

    McLuckey, S. A.; Cooks, R. G.; Fulford, J. E. Int. J. Mass Spectrom. 1983, 52, 165–174.

    CAS  Article  Google Scholar 

  52. 53.

    Marzluff, E. M.; Campbell, S.; Rodgers, M. T.; Beauchamp, J. L. J. Am. Chem. Soc. 1994, 116, 6947–6948.

    CAS  Article  Google Scholar 

  53. 54.

    Augusti, R.; Zheng, X.; Noll, R. J.; Cooks, R. G. J. Phys. Chem. A, to be published.

  54. 55.

    Lide, D. R. CRC Handbook of Chemistry and Physics; 75th ed. CRC ress: Ann Arbor, 1995.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Graham Cooks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, L., Denault, J.W., Cooks, R.G. et al. Alkali chloride cluster ion dissociation examined by the kinetic method: Heterolytic bond dissociation energies, effective temperatures, and entropic effects. J. Am. Soc. Spectrom. 13, 1388–1395 (2002). https://doi.org/10.1016/S1044-0305(02)00704-3

Download citation

Keywords

  • RbCl
  • Effective Temperature
  • Kinetic Method
  • Thermochemical Cycle
  • Variational Transition State Theory