Gas phase hydrogen deuterium exchange reactions of a model peptide: FT-ICR and computational analyses of metal induced conformational mutations

  • T. SoloukiEmail author
  • R. C. Fort
  • A. Alomary
  • A. Fattahi


We utilized gas phase hydrogen/deuterium (H/D) exchange reactions and ab initio calculations to investigate the complexation between a model peptide (Arg-Gly-Asp≡RGD) with various alkali metal ions. The peptide conformation is drastically altered upon alkali metal ion complexation. The associated conformational changes depend on both the number and type of complexing alkali metal ions. Sodium has a smaller ionic diameter and prefers a multidentate interaction that involves all three amino acids of the peptide. Conversely, potassium and cesium form different types of complexes with the RGD. The [RGD + 2Cs − H]+ species exhibit the slowest H/D exchange reactivity (reaction rate constant of ∼6 × 10−13 cm3molecule−1s−1 for the fastest exchanging labile hydrogen with ND3). The reaction rate constant of the protonated RGD is two orders of magnitude faster than that of the [RGD + 2Cs − H]+. Addition of the first cesium to the RGD reduces the H/D exchange reaction rate constant (i.e., D0) by a factor of seven whereas sodium reduces this value by a factor of thirty. Conversely, addition of the second alkali metal ions has the opposite effect; the rate of D0 disappearance for all [RGD + 2Met − H]+ species (Met≡Na, K, and Cs) decreases with the alkali metal ion size.


Exchange Reaction Labile Hydrogen Store Waveform Inverse Fourier Transform Trapping Plate Salt Bridge Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sopkova, J.; Vincent, M.; Takahashi, M.; Lewit-Bentley, A.; Gallay, J. Conformational Flexibility of Domain in of Annexin V Studied by Fluoroscence of Tryptophan 187 and Circular Dichroism: The Effect of pH. Biochemistry 1998, 37, 11962–11970.CrossRefGoogle Scholar
  2. 2.
    Graceffa, P. Movement of Smooth Muscle Tropomyosin by Myosin Heads. Biochemistry 1999, 38, 11984–11992.CrossRefGoogle Scholar
  3. 3.
    Kaim, W.; Schewederski, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life. John Wiley & Sons: Chichester, 1994.Google Scholar
  4. 4.
    Cerda, B. A.; Wesdemiotis, C. Li+, Na+, and K+ Binding to the DNA and RNA Nucleobases: Bond Energies and Attachment Sites from the Dissociation of Metal-Bound Heterodimers. J. Am. Chem. Soc. 1996, 118, 11884–11892.CrossRefGoogle Scholar
  5. 5.
    Cerda, B. A.; Hoyau, S.; Ohanessin, G.; Wesdemiotis, C. Na+ Binding to Cyclic and Linear Dipeptides: Bond Energies, Entropies of Na+ Complexation, and Attachment Sites from the Dissociation of Na+-Bound Heterodimers and ab initio Calculations. J. Am. Chem. Soc. 1998, 120, 2437–2448.CrossRefGoogle Scholar
  6. 6.
    Veenstra, T. D.; Johnson, K. L.; Tomlinson, A. J.; Craig, T. A.; Kumar, R.; Naylor, S. Zinc-induced Conformational Changes in the DNA-Binding Domain of the Vitamin D Receptor Determined by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 8–14.CrossRefGoogle Scholar
  7. 7.
    Manyusa, S.; Whitford, D. Defining Folding and Unfolding Reactions of Apocytochrome b5 Using Equilibrium and Kinetic Fluorescence Measurements. Biochemistry 1999, 38, 9533–9540.CrossRefGoogle Scholar
  8. 8.
    Gustafsson, A.; Etahadieh, M.; Jemth, P.; Mannervik, B. The C-Terminal Region of Human Glutathione Transferase A1-1 Affects the Rate of Glutathione Binding and the Ionization of the Active-Site Tyr9. Biochemistry 1999, 38, 16268–16275.CrossRefGoogle Scholar
  9. 9.
    Brange, J.; Ribel, U.; Hansen, J. F.; Dodson, G.; Hansen, M. T.; Havelund, S.; Melberg, S. G.; Norris, F.; Norris, K.; Snel, L.; Sorensen, A. R.; Viogt, H. O. Monomeric Insulin Obtained by Protein Engineering and Their Medical Implication. Nature (London) 1988, 333, 679–682.CrossRefGoogle Scholar
  10. 10.
    Roder, H.; Elove, G. A.; Englander, S. W. Structural Characterization of Folding Intermediates in Cytochrome c by H-Exchange Labeling and Proton NMR. Nature 1988, 335, 700–704.CrossRefGoogle Scholar
  11. 11.
    Gronert, S.; O’Hair, R. A. J. Ab initio Studies of Amino Acid Conformations. 1: The Conformers of Alanine, Serine, and Cysteine. J. Am. Chem. Soc. 1995, 117, 2071–2081.CrossRefGoogle Scholar
  12. 12.
    Hoyau, S.; Ohanessian, G. Absolute Affinities of a-Amino Acid for Cu+ in the Gas Phase: A Theoretical Study. J. Am. Chem. Soc. 1997, 119, 2016–2024.CrossRefGoogle Scholar
  13. 13.
    Hoyau, S.; Norrman, K.; McMahon, T. B.; Ohanessian, G. A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase. J. Am. Chem. Soc. 1999, 121, 8864–8875.CrossRefGoogle Scholar
  14. 14.
    A. W. Castleman; J. Holland; P. M. Lindsay; D. M. Peterson; K. I. The Properties of Clusters in the Gas Phase. 2: Ammonia About Metal Ions. J. Am. Chem. Soc. 1978, 78, 6039–6045.CrossRefGoogle Scholar
  15. 15.
    Bojesen, G.; Breindahl, T.; Andersen, U. N. On the Sodium and Lithium Ion Affinities of Some a-Amino Acids. Organ. Mass Spect. 1993, 28, 1448–1452.CrossRefGoogle Scholar
  16. 16.
    Dzidic, I.; Kebarle, P. Hydration of the Alkali Ions in the Gas Phase: Enthalpies and Entropies of Reaction M+(H2O)n−1 + H2O = M+(H2O)n. J. Phys. Chem. 1970, 74, 1466–1474.CrossRefGoogle Scholar
  17. 17.
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M. III; McLafferty, F. W.; Coexisting Stable Conformations of Gaseous Protein Ions. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 790–793.CrossRefGoogle Scholar
  18. 18.
    Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas Phase Proteins via H/D Isotopic Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.CrossRefGoogle Scholar
  19. 19.
    Dharmasiri, K.; Smith, D. L. Regional Stability Changes in Oxidized and Reduced Cytochrome c Located by Hydrogen Exchange and Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 1039–1045.CrossRefGoogle Scholar
  20. 20.
    McLafferty, F. W.; Guan, Z.; Haupts, U.; Wood, T. W.; Kelleher, N. L. Gaseous Conformational Structures of Cytochrome c. J. Am. Chem. Soc. 1998, 120, 4732–4740.CrossRefGoogle Scholar
  21. 21.
    Gross, D. S.; Schnier, P. D.; Rodrigues-Cruz, S. E.; Fagerquist, C. K.; Williams, E. R. Conformations and Folding of Lysozyme Ions In Vacuo. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3143–3148.CrossRefGoogle Scholar
  22. 22.
    Kim, P. S.; Baldwin, R. L. Structural Intermediates Trapped During the Folding of Ribonuclease A by Amide Proton Exchange. Biochemistry 1980, 19, 6124–6129.CrossRefGoogle Scholar
  23. 23.
    Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Detection of Transient Protein Folding Populations by Mass Spectrometry. Science 1993, 262, 896–900.CrossRefGoogle Scholar
  24. 24.
    Hughson, F. M.; Wright, P. E.; Baldwin, R. L. Structural Characterization of a Partly Folded Apomyoglobin Intermediate. Science 1990, 249, 1544–1548.CrossRefGoogle Scholar
  25. 25.
    Englander, S. W.; Kallenbach, N. R. Hydrogen Exchange and Structural Dynamics of Proteins and Nucleic Acids. Q. Rev. Biophys. 1984, 16, 521–655.CrossRefGoogle Scholar
  26. 26.
    Englander, S. W. In Pursuit of Protein Folding. Science 1993, 62, 848–849.CrossRefGoogle Scholar
  27. 27.
    Karas, M.; Bachmann, D.; Bahr, D.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53–68.CrossRefGoogle Scholar
  28. 28.
    Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B. Electrospray Interface for Liquid Chromatographs and Mass Spectrometers. Anal. Chem. 1985, 57, 675–679.CrossRefGoogle Scholar
  29. 29.
    Strobel, F. H.; Solouki, T.; White, M. A.; Russell, D. H. Detection of Femtomole and Subfemtomole Levels of Peptides by Tandem Magnetic Sector/Reflectron Time-of Flight Mass Spectrometry and Matrix-Assisted Laser Desorption Ionization. J. Am. Soc. Mass Spectrom. 1991, 2, 91–94.CrossRefGoogle Scholar
  30. 30.
    Williams, E. R.; Henry, K. D.; McLafferty, F. W. Multiple Remeasurement of Ions in Fourier Transform Mass Spectrometry. J. Am. Chem. Soc. 1990, 112, 6157–6162.CrossRefGoogle Scholar
  31. 31.
    Andren, P. E.; Emmett, M. R.; Caprioli, R. M. Micro-Electrospray: Zeptomole/Attomole Per Microliter Sensitivity for Peptides. J. Am. Soc. Mass Spectrom. 1994, 5, 867–869.CrossRefGoogle Scholar
  32. 32.
    Solouki, T.; Marto, J. A.; White, F. M.; Guan, S.; Marshall, A. G. Attomole Biomolecule Mass Analysis by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance. Anal. Chem. 1995, 67, 4139–4144.CrossRefGoogle Scholar
  33. 33.
    Valaskovic, G. A.; Kelleher, N. K.; Little, D. P.; Aaserud, D. J.; McLafferty, F. W. Attomole-Sensitivity Electrospray Source for Large-Molecule Mass Spectrometry. Anal. Chem. 1995, 67, 3802–3805.CrossRefGoogle Scholar
  34. 34.
    Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G. External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976.CrossRefGoogle Scholar
  35. 35.
    Emmett, M. R.; White, F. M.; Hendrickson, C. L.; Shi, S. D.-H.; Marshall, A. G. Application of Micro-Electrospray Liquid Chromatography Techniques to FT-ICR MS to Enable High-Sensitivity Biological Analysis. J. Am. Soc. Mass Spectrom. 1998, 9, 333–340.CrossRefGoogle Scholar
  36. 36.
    Robinson, C. V.; Chung, E. W.; Krageland, B. B.; Knudsen, J.; Alpin, R. T.; Poulsen, F. M.; Dobson, C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry: A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  37. 37.
    Katta, V.; Chait, B. T. Hydrogen/Deuterium Exchange Electrospray Ionization Mass Spectrometry: A Method for Probing Protein Conformational Changes in Solution. J. Am. Chem. Soc. 1993, 115, 6317–6321.CrossRefGoogle Scholar
  38. 38.
    Hunt, D. F.; McEwen, C. N.; Upham, R. A. Determination of Active Hydrogen in Organic Compounds by Chemical Ionization Mass Spectrometry. Anal. Chem. 1972, 44, 1292–1294.CrossRefGoogle Scholar
  39. 39.
    Freiser, B. S.; Woodin, R. L.; Beauchamp, J. L. Sequential Deuterium Exchange Reactions of Protonated Benzene with D2O in the Gas Phase by Ion Cyclotron Resonance Mass Spectroscopy. J. Am. Chem. Soc. 1975, 97, 6893–6894.CrossRefGoogle Scholar
  40. 40.
    Ranasinghe, A.; Cooks, R. G.; Sethi, S. K. Selective Isotopic Exchange of Polyfunctional Ions in Tandem Mass Spectrometry: Methodology, Applications and Mechanism. Organic Mass Spectrometry 1992, 22, 77–88.CrossRefGoogle Scholar
  41. 41.
    Gard, E.; Willard, D.; Bregar, J.; Green, M. K.; Lebrilla, C. B. Site Specificity on the H/D Exchange Reactions of Gas Phase Protonated Amino Acids with CH3OD. Organ. Mass Spect. 1993, 28, 1632–1639.CrossRefGoogle Scholar
  42. 42.
    Heck, A. J. R.; Jergensen, T. J. D.; O’Sullivan, M.; Raumer, M. V.; Derrick, P. J. Gas phase Noncovalent Interactions Between Vancomycin-Group Antibiotics and Bacterial Cell-Wall Precursor Peptides Probed by Hydrogen/Deuterium Exchange. J. Am. Soc. Mass Spectrom. 1998, 9, 1255–1266.CrossRefGoogle Scholar
  43. 43.
    Freitas, M. A.; Hendrickson, C. L.; Emmett, M. R.; Marshall, A. G. High-Field Fourier Transform ion Cyclotron Resonance Mass Spectrometry for Simultaneous Trapping and Gas Phase Hydrogen/Deuterium Exchange for Peptide Ions. J. Am. Soc. Mass Spectrom. 1998, 9, 1012–1019.CrossRefGoogle Scholar
  44. 44.
    Campbell, C.; Rogers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Structural and Energetic Constraints on Gas Phase Hydrogen/ Deuterium Exchange Reactions of Protonated Peptides with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1994, 116, 9765–9766.CrossRefGoogle Scholar
  45. 45.
    Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure: Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840–12854.CrossRefGoogle Scholar
  46. 46.
    Valentine, S. J.; Clemmer, D. E. H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 3558–3566.CrossRefGoogle Scholar
  47. 47.
    Wyttenbach, T.; Bowers, M. T. Gas Phase Conformations of Biological Molecules: The Hydrogen/Deutrium Exchange Mechanism. J. Am. Soc. Mass Spectrom. 1998, 10, 9–14.CrossRefGoogle Scholar
  48. 48.
    Solouki, T.; Freitas, M. A.; Alomary, A. Gas-phase Hydrogen/ Deuterium Exchange Reactions of Fulvic Acids: An Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectral Study. Anal. Chem. 1999, 71, 4719–4726.CrossRefGoogle Scholar
  49. 49.
    Alomary, A.; Solouki, T.; Patterson, H. H.; Cronan, C. S. Elucidation of Aluminum-Fulvic Acid Interactions by Gas Phase Hydrogen/Deuterium (H/D) Exchange and Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI FT-ICR). Environ. Sci. Technol. 2000, 34, 2830–2838.CrossRefGoogle Scholar
  50. 50.
    Comisarow, M. B.; Marshall, A. G. Frequency Sweep Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem. Phys. Lett. 1974, 26, 489–490.CrossRefGoogle Scholar
  51. 51.
    Wang, T. C. L.; Ricca, T. L.; Marshall, A. G. Extension of Dynamic Range in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry via Stored Waveform Inverse Fourier Transform Excitation. Anal. Chem. 1986, 58, 2935–2938.CrossRefGoogle Scholar
  52. 52.
    Jiao, C. Q.; Ranatunga, D. R. A.; Vaughn, W. E.; Freiser, B. S. A Pulsed Leak Valve for Use with Ion Trapping Mass Spectrometers. J. Am. Soc. Mass Spectrom. 1996, 7, 118–122.CrossRefGoogle Scholar
  53. 53.
    Gupta, S. K.; Jones, E. G.; Harrison, A. G.; Myher, J. J. Reactions of Thermal Energy Ions. VI: Hydrogen Transfer Ion-Molecule Reactions Involving Polar Molecules. Canad. J. Chem. 1967, 45, 3107–3117.CrossRefGoogle Scholar
  54. 54.
    Ausloos, P.; Lias, S. G. Thermoneutral Isotope Exchange Reactions of Cations in the Gas Phase. J. Am. Chem. Soc. 1981, 103, 3641–3645.CrossRefGoogle Scholar
  55. 55.
    Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab initio Molecular Orbital Theory. Wiley-Interscience: New York, 1986; pp 1–226.Google Scholar
  56. 56.
    Ramachandran, G. N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95–99.CrossRefGoogle Scholar
  57. 57.
    Lide, D. R. CRC Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, 1996–1997; pp 7–10.Google Scholar
  58. 58.
    Kimizuka, F.; Ohdate, Y.; Kawase, Y.; Shimojo, T.; Taguchi, Y.; Hashino, K.; Goto, S.; Hashi, H.; Kato, I.; Sekiguchi, K.; Titani, K. Role of Type III Homology Repeats in Cell Adhesive Function Within the Cell-Binding Domain of Fibronectin. J. Biol. Chem. 1991, 266, 3045–3051.Google Scholar
  59. 59.
    Main, A. L.; Harvey, T. S.; Baron, M.; Boyd, J.; Campbell, I. D. The Three-Dimensional Structure of the Tenth Type III Module of Fibronectin: An Insight Into RGD-Mediated Interactions. Cell 1992, 71, 671–678.CrossRefGoogle Scholar
  60. 60.
    Chu, I.-H.; Zhang, H.; Dearden, D. V. Macrocyclic Chemistry in the Gas Phase: Intrinsic Cation Affinities and Complexation Rates for Alkali Metal Cation Complexes of Crown Ethers and Glymes. J. Am. Chem. Soc. 1993, 115, 5736–5744.CrossRefGoogle Scholar
  61. 61.
    Maleknia, S.; Brodbelt, J. Gas-Phase Selectivities of Crown Ethers for Alkali Metal Ion Complexation. J. Am. Chem. Soc. 1992, 114, 4295–4298.CrossRefGoogle Scholar
  62. 62.
    Wyttenbach, T.; Witt, M.; Bowers, M. T. On the Stability of Amino Acid Zwitterions in the Gas Phase: The Influence of Derivatization, Proton Affinity, and Alkali Ion Addition. J. Am. Chem. Soc. 2000, 122, 3458–3464.CrossRefGoogle Scholar
  63. 63.
    Wyttenbach, T.; Witt, M.; Bowers, M. T. On the Question of Salt Bridges of Cationized Amino Acids in the Gas Phase: Glycine and Arginine. Int. J. Mass Spectrom. 1999, 182/183, 243–252.CrossRefGoogle Scholar
  64. 64.
    Wyttenbach, T.; Bushnell, J. E.; Bowers, M. T. Salt Bridge Structures in the Absence of Solvent?: The Case for the Oligoglycines. J. Am. Chem. Soc. 1998, 120, 5098–5103.CrossRefGoogle Scholar
  65. 65.
    Jockusch, R. A.; Price, W. D.; Williams, E. R. Structure of Cationized Arginine (Arg·M+, M = H, Li, Na, K, Rb, and Cs) in the Gas Phase: Further Evidence for Zwitterionic Arginine. J. Phys. Chem. A 1999, 103, 9266–9274.CrossRefGoogle Scholar
  66. 66.
    Freitas, M. A.; Marshall, A. G. Rate and Extent of Gas-Phase Hydrogen/Deuterium Exchange of Bradykinins: Evidence for Peptide Zwitterions in the Gas Phase. Int. J. Mass Spectrom. 1999, 182/183, 221–231.CrossRefGoogle Scholar
  67. 67.
    Grese, R. P.; Cerny, R. L.; Gross, M. L. Metal Ion-Peptide Interactions in the Gas Phase: A Tandem Mass Spectrometry Study of Alkali Metal Cationized Peptides. J. Am. Chem. Soc. 1989, 111, 2835–2842.CrossRefGoogle Scholar
  68. 68.
    Frensdorff, H. K. Stability Constants of Cyclic Polyether Complexes with Univalent Cations. J. Am. Chem. Soc. 1971, 93 600–606.CrossRefGoogle Scholar
  69. 69.
    Schnier, P. D.; Gross, D. S.; Williams, E. R. Electrostatic Forces and Dielectric Polarizability of Multiply Protonated Gas-Phase Cytochrome C Ions Probed by Ion/Molecules Reactions. J. Am. Chem. Soc. 1995, 117, 6747–6757.CrossRefGoogle Scholar
  70. 70.
    He, F.; Marshall, A. G. Weighted Quasi-Newton and Variable-Order, Variable-Step Adams Algorithm for Determining Site Specific Reaction Rate Constants. J. Phys. Chem. A 2000, 104, 562–567.CrossRefGoogle Scholar
  71. 71.
    Russell, D. H.; Solouki, T.; Oriedo, J. V. B. Collisional Relaxation of Metastable Electronic States of Fe+. J. Am. Soc. Mass Spectrom. 1995, 6, 543–553.CrossRefGoogle Scholar
  72. 72.
    Langevin, P. Une Formule Fondamentale de Theorie Cintique. Ann. Chim. Phys. 1905, 5, 245.Google Scholar
  73. 73.
    More, M. B.; Ray, D.; Armentrout, P. B. Cation-Ether Complexes in the Gas Phase: Bond Dissociation Energies of Na+(dimethylether)x, x = 1–4; Na+(l,2-dimethoxyethane)x, x = 1 and 2; and Na+ (12-crown-4). J. Phys. Chem. 1997, 101, 831–839.Google Scholar
  74. 74.
    Kestner, N. R.; Combariza, J. E.; Lipkowitz, K. B.; Boyd, D. B. Reviews in Computational Chemistry; Wiley-VCH: New York, 1999; Vol. XIII, pp 99–132.CrossRefGoogle Scholar
  75. 75.
    van Duijneveldt, F. B.; Scheiner, S. Molecular Interactions. John Wiley: New York, 1997; Chap III.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2001

Authors and Affiliations

  • T. Solouki
    • 1
    Email author
  • R. C. Fort
    • 1
  • A. Alomary
    • 1
  • A. Fattahi
    • 1
  1. 1.Department of ChemistryUniversity of MaineOronoUSA

Personalised recommendations