Skip to main content
Log in

Mass spectrometric evidence for mechanisms of fragmentation of charge-derivatized peptides

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Mass spectrometry of charged derivatives of peptides has been a growing area of interest in the past decade. Fragmentation of charged derivatives of peptides is believed to be different from than that of protonated peptides when analyzed by collisionally activated dissociation-tandem mass spectrometry (CAD-MS/MS). The charged derivatives fragment by charge-remote fragmentation mechanisms, which are usually classified as high-energy (HE)-CAD processes. Our objective in the present study is to investigate the mechanism of fragmentation of charged derivatives of peptides when analyzed by matrix-assisted laser desorption/ionization-post-source decay-mass spectrometry (MALDI-PSD-MS) and electrospray ionization (ESI)-CAD-MS/MS (ion trap), which involve low-energy processes. Three major types of hydrogens (α, β, and amide) are available for migration during the formation of the *a n ions (the predominant ion series produced from these charged derivatives). To pinpoint which of the three hydrogens is involved in the formation of the *a n ions, deuterium-labeled peptide derivatives with labels at specific sites were synthesized and analyzed by MALDI-PSD-MS and ESI-CAD-MS/MS. Our results suggest that the amide hydrogen of the residue at which the cleavage occurs shifts during the formation of *a n; this observation serves as evidence for the mechanism proposed earlier by Liao et al. for fragmentation of such charged derivatives. The results also help elucidate the structure of the *a n ions, *b n ions, and others formed during cleavage at the proline residue, as well as the ions formed during loss of the C-terminal residue from these charged derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.

    Article  CAS  Google Scholar 

  2. Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Anal. Chem. 1987, 59, 2621–2625.

    Article  CAS  Google Scholar 

  3. Dongre, A. R.; Jones, J. L.; Somoygi, A.; Wysocki, V. H. J. Am. Chem. Soc. 1996, 118, 8365–8374.

    Article  CAS  Google Scholar 

  4. Johnson, R. S.; Krylov, D.; Walsh, K. A. J. Mass Spectrom. 1995, 30, 386–387.

    Article  CAS  Google Scholar 

  5. Tang, X.-J.; Thibault, P.; Boyd, R. K. Anal. Chem. 1993, 65, 2824–2834.

    Article  CAS  Google Scholar 

  6. Jones, J. L.; Dongre, A. R.; Somogyi, V. H.; Wysocki, V. H. J. Am. Chem. Soc. 1994, 116, 8368–8369.

    Article  CAS  Google Scholar 

  7. Hunt, D. F.; Yates, J. R.; Shabanowitz, J.; Winston, S.; Hauer, C. R. Proc. Natl. Acad. USA 1986, 83, 6233–6237.

    Article  CAS  Google Scholar 

  8. Mueller, D. R.; Eckersley, M.; Richter, W. J. Org. Mass Spectrom. 1988, 23, 217–222.

    Article  CAS  Google Scholar 

  9. Kenny, P.; Nomoto, K.; Orlando, R. Rapid Commun. Mass Spectrom. 1992, 6, 95–97.

    Article  CAS  Google Scholar 

  10. Roth, K. D. W.; Huang, Z.-H.; Sadagopan, N.; Watson, J. T. Mass Spectrom. Rev. 1998, 17, 255–274.

    Article  CAS  Google Scholar 

  11. Keough, T.; Youngquist, R. S.; Lacey, M. P. Proc. Natl. Acad. Sci. USA 1999, 96, 7131–7136.

    Article  CAS  Google Scholar 

  12. Bauer, M. D.; Sun, Y.; Keough, T.; Lacey, M. P. Rapid Commun. Mass Spectrom. 2000, 14, 924–929.

    Article  CAS  Google Scholar 

  13. Burlet, O.; Orkiszewski, R. S.; Ballard, K. D.; Gaskell, S. J. Rapid Commun. Mass Spectrom. 1992, 6, 658–662.

    Article  CAS  Google Scholar 

  14. Ligon, W. V. Anal. Chem. 1986, 58, 485–487.

    Article  CAS  Google Scholar 

  15. Huang, Z.-H.; Wu, J.; Roth, K. D. W.; Yang, Y.; Gage, D. A.; Watson, J. T. Anal. Chem. 1997, 69, 137–144.

    Article  CAS  Google Scholar 

  16. Liao, P.-C.; Huang, Z.-H.; Allison, J. J. Am. Soc. Mass Spectrom. 1997, 8, 501–509.

    Article  CAS  Google Scholar 

  17. Sadagopan, N.; Watson, J. T. J. Am. Soc. Mass Spectrom. 2000, 11, 107–119.

    Article  CAS  Google Scholar 

  18. Wagner, D. S. Characterization of the triphenylphosphonium derivative of peptides by fast atom bombardment-tandem mass spectrometry, and investigations of the mechanisms of fragmentation of peptides. Ph.D. Dissertation, Michigan State University, 1992.

  19. Barany, G.; Merrifield, R. B. The Peptide Analysis, Synthesis, Biology; Gross, E.; Meinhofer, J., Ed.; Academic: New York, 1980.

    Google Scholar 

  20. Yalcin, T.; Khouw, C.; Csizimadia, I. G.; Peterson, M. R.; J. Am. Soc. Mass Spectrom. 1995, 6, 1165–1174.

    Article  CAS  Google Scholar 

  21. Thorne, G. C.; Ballard, K. D.; Gaskell, S. J. J. Am. Soc. Mass Spectrom. 1990, 1, 249–257.

    Article  CAS  Google Scholar 

  22. Tang, X.; Boyd, R. K. Rapid Commun. Mass Spectrom. 1992, 6, 651–657.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Throck Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadagopan, N., Watson, J.T. Mass spectrometric evidence for mechanisms of fragmentation of charge-derivatized peptides. J Am Soc Mass Spectrom 12, 399–409 (2001). https://doi.org/10.1016/S1044-0305(01)00211-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(01)00211-2

Keywords

Navigation