Skip to main content
Log in

A gated trapping strategy with a two-time constant and a delay for catching in-field generated ions that range over three decades in mass-to-charge and two decades in velocity in Fourier-transform mass spectrometry

  • Focus: FT-ICR-MS
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

In-field, matrix-assisted laser desorption/ionization (MALDI) may provide a means to keep part of the original promise of Fourier-transform mass spectrometry (FTMS) to give high performance and versatile mass spectrometry from a mechanically simple instrument. Gated trapping has been employed as a means of catching MALDI-produced ions in the FTMS trap. This approach is important for both in-field and externally produced ions. Even with improvements, gated trapping has not yet been able to catch ions over wide ranges of mass-to-charge and velocity. A design of a “two-time constant with a delay” gated trapping strategy using “idealized” potentials in a normalized system is given as an example to establish that in principle gated trapping strategies can capture ions that range over three decades of m/z and two decades in velocity. A procedure for calculating a physical system from the normalized system is given. The design is tolerant of variations in the physical parameters used to define the physical system from the normalized system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, M. L.; Rempel, D. L. Fourier transform mass spectrometry. Science 1984, 226, 261–268.

    Article  CAS  Google Scholar 

  2. McIver, R. T. Jr.; Hunter, R. L.; Bowers, W. D. Coupling a quadrupole mass spectrometer and a Fourier transform mass spectrometer. Int. J. Mass Spectrom. Ion Processes 1985, 64, 67–77.

    Article  CAS  Google Scholar 

  3. Kofel, P.; Allemann, M.; Kellerhals, H.; Wanczek, K. P. External generation of ions in ICR spectrometry. Int. J. Mass Spectrom. Ion Processes 1985, 65, 97–103.

    Article  CAS  Google Scholar 

  4. Knobeler, M.; Wanczek, K. P. Theoretical investigation of improved ion trapping in matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry: independence of ion initial velocity. Int. J. Mass Spectrom. Ion Processes 1997, 163, 47–68.

    Article  CAS  Google Scholar 

  5. Alford, J. M.; Williams, P. E.; Trevor, D. J.; Smalley, R. E. Metal cluster ion cyclotron resonance. Combining supersonic metal cluster beam technology with FT-ICR. Int. J. Mass Spectrom. Ion Processes 1986, 72, 33–51.

    Article  CAS  Google Scholar 

  6. Castro, J. A.; Koester, C.; Wilkins, C. Matrix-assisted laser desorption/ionization of high-mass molecules by Fourier-transform mass spectrometry. Rapid Commun. Mass Spectrom. 1992, 6, 239–241.

    Article  CAS  Google Scholar 

  7. Castoro, J. A.; Wilkins, C. L. Ultrahigh resolution matrix-assisted laser desorption/ionization of small proteins by Fourier-transform mass spectrometry. Anal. Chem. 1993, 65, 2621–2627.

    Article  CAS  Google Scholar 

  8. Hofstadler, S. A.; Laude, D. A., Jr. Ion ejection from Fourier transform mass spectrometry trapped ion cells due to non-adiabatic changes in trapping potentials. Int. J. Mass Spectrom. Ion Processes 1990, 101, 65–78.

    Article  CAS  Google Scholar 

  9. Dey, M.; Castoro, J. A.; Wilkins, C. L. Determination of molecular weight distributions of polymers by MALDI-FTMS. Anal. Chem. 1995, 67, 1575–1579.

    Article  CAS  Google Scholar 

  10. Pastor, S. J.; Wilkins, C. L. Analysis of hydrocarbon polymers by matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 225–233.

    Article  CAS  Google Scholar 

  11. Yao, J.; Dey, M.; Pastor, S. J.; Wilkins, C. L. Analysis of high-mass biomolecules using electrostatic fields and matrix-assisted laser desorption/ionization in a Fourier transform mass spectrometer. Anal. Chem. 1995, 67, 3638–3642.

    Article  CAS  Google Scholar 

  12. Easterling, M. L.; Mize, T. H.; Jonathan Amster, I. MALDI FTMS analysis of polymers: improved performance using an open ended cylindrical analyzer cell. Int. J. Mass Spectrom. Ion Processes 1997, 169/170, 387–400.

    Article  CAS  Google Scholar 

  13. Easterling, M. L.; Pitsenberger, C. C.; Amster, I. J. rf capacitive coupling with efficient gated trapping in internal matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance. J. Am. Soc. Mass Spectrom. 1997, 8, 195–198.

    Article  CAS  Google Scholar 

  14. Knobeler, M.; Wanczek, K. P. Theoretical investigation of improved ion trapping in matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry: independence of ion initial velocity. Int. J. Mass Spectrom. Ion Processes 1997, 163, 47–68.

    Article  CAS  Google Scholar 

  15. Hendricson, C. L.; Drader, J. J.; Quinn, J. P.; Mize, T. H.; Amster, J.; Marshall, A. G. Design and performance of an 11-Tesla MALDI FT-ICR mass spectrometer. Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, Texas, June 13–17, 1999.

  16. Burmester, S.; Wanczek, K. P. Improved deceleration of MALDI produced ions for the FT-ICR spectrometry. Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics; Long Beach, California, June 11–15, 2000.

  17. Rempel, D. L.; Gross, M. L. A radio/trap supply design that accommodates both trap electric field compensation and rapidly switched gated trapping for in-field MALDI Fourier transform mass spectrometry. Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics; Long Beach, California, June 11–15, 2000.

  18. Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Shrink-wrapping an ion cloud for high-performance Fourier transform ion cyclotron resonance mass spectrometry. Chem. Rev. 1994, 94, 2161–2182.

    Article  CAS  Google Scholar 

  19. Nakagawa, H. Principle and recent topics in FTMS with MALDI and ESI techniques. J. Mass Spectrom. Soc. Jpn. 1996, 44, 415–429.

    CAS  Google Scholar 

  20. Dale, V. C. M.; Speirt, J. P.; Kruppa, G. H.; Stacey, C. C.; Mann, M.; Wilm, M. Applications of sustained off-resonance irradiation (SORI) and quadrupolar excitation axialization (QEA) for the characterization of biomolecules by Fourier-transform mass spectrometry (FTMS). Biochem. Soc. Trans. 1996, 24, 943–947.

    CAS  Google Scholar 

  21. Holliman, C. L.; Rempel, D. L.; Gross, M. L. Detection of high mass-to-charge ions by Fourier transform mass spectrometry. Mass Spectrom. Rev. 1994, 13, 105–132.

    Article  CAS  Google Scholar 

  22. Arnold, V. I. Mathematical Methods of Classical Mechanics, 2nd ed.; Springer: New York, 1989; pp 8 and 16.

    Google Scholar 

  23. March, R. E.; Hughes, R. J. Quadrupole Storage Mass Spectrometry; Wiley: New York, 1989.

    Google Scholar 

  24. Jackson, J. D. Classical Electrodynamic, 2nd ed.; Wiley: New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rempel, D.L., Gross, M.L. A gated trapping strategy with a two-time constant and a delay for catching in-field generated ions that range over three decades in mass-to-charge and two decades in velocity in Fourier-transform mass spectrometry. J Am Soc Mass Spectrom 12, 296–303 (2001). https://doi.org/10.1016/S1044-0305(00)00225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00225-7

Keywords

Navigation