Skip to main content
Log in

The behavior of oxygen as a collision-induced dissociation target gas

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The unusual and unique ability of O2 as target gas in kV collision-induced dissociations, to enhance a specific fragmentation of a mass selected ion, has been examined in detail. The affected dissociations studied were the loss of CH .3 from CH3CH+X (X = OH, CH3, NH2, SH); CH3 and Cl. loss from CH3C+(Cl)CH3; C2H5 loss from CH3CH2CH+X (X = OH and NH2); H loss from Cl. CH2OH and+CH2NH2; O. loss from 1,2−, 1,3−, and 1,4−C6H4(NO +.2 CH3NO +.2 ; C6H5NO +.2 ; C5H5NO+. (pyridine N-oxide); 3− and 4−CH3C5H4NO+.. A general explanation of the phenomena, which was semiquantitatively tested in the present work, can be summarized as follows: the ion − O2 encounter excites the target molecules to their3 g state which resonantly return this energy to electronic state(s) in the ion. The excited ion now contains a sharp excess of a narrow range of internal energies, thus significantly and only enhancing fragmentations whose activation energies lie within this small energy manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McLuckey, S. A.J. Am. Chem. Soc. Mass Spectrom. 1992,3, 599.

    Article  CAS  Google Scholar 

  2. Baer, T.; Hase, W. L.Unimolecular Reaction Dynamics Theory and Experiments; Oxford University Press: New York, 1996.

    Google Scholar 

  3. Jennings, K. R.Int. J. Mass Spectrom. Ion Phys. 1968,1, 227.

    Article  CAS  Google Scholar 

  4. Haddon, W. F.; McLafferty, F. W.J. Am. Chem. Soc. 1968,90, 4745.

    Article  CAS  Google Scholar 

  5. Burgers, P. C.; Holmes, J. L.; Mommers, A. A.; Terlouw, J. K.Chem. Phys. Lett. 1983,102, 1.

    Article  CAS  Google Scholar 

  6. Danis, P. O.; Wesdemiotis, C.; McLafferty, F. W.J. Am. Chem. Soc. 1983,105, 7454.

    Article  CAS  Google Scholar 

  7. For some recent reviews see Goldberg, N.; Schwarz, H.Acc. Chem. Res. 1994,27, 347.

    Article  CAS  Google Scholar 

  8. For some recent reviews see Schalley, C. A.; Hornung, G.; Schroder, D.; Schwarz, H.Chem. Soc. Rev. 1998,27, 91.

    Article  CAS  Google Scholar 

  9. For some recent reviews see Turecek, K.J. Mass Spectrom. 1998,33, 779.

    Article  CAS  Google Scholar 

  10. For some recent reviews see Zagorevskii, D.; Holmes, J. L.Mass Spectrom. Rev. 1999,18, 87.

    Article  CAS  Google Scholar 

  11. Flammang, R.; Gallez, L.; Haverbeke, Y. V.; Wong, M. W.; Wentrup, C.Rapid Commun. Mass Spectrom. 1996,10, 232.

    Article  CAS  Google Scholar 

  12. Gerbaux, P.; Barbieux-Flammang, M.; Haverbeke, Y. V.; Flammang, R.Rapid Commun. Mass Spectrom. 1999,13, 1707.

    Article  CAS  Google Scholar 

  13. Flammang, R.; Gerbaux, P.; Wong, M. W.Chem. Phys. Lett. 1999,300, 183.

    Article  CAS  Google Scholar 

  14. Flammang, R.; Henrotte, V.; Gerbaux, P.Eur. Mass Spectrom. 2000,6, 3.

    Article  CAS  Google Scholar 

  15. Aubry, C.; Holmes, J. L.J. Phys. Chem. A 1998,102, 6441.

    Article  CAS  Google Scholar 

  16. Holmes, J. L.; Mayer, P. M.J. Phys. Chem. 1995,99, 1366.

    Article  CAS  Google Scholar 

  17. Bush, K. L.; Glish, G. L.; McLuckey, S. A.Mass Spectrometry/ Mass Spectrometry; VCH: New York, 1988.

    Google Scholar 

  18. Holmes, J. L.; Terlouw, J. K.Org. Mass Spectrom. 1980,15, 383.

    Article  CAS  Google Scholar 

  19. Some preliminary low translational kinetic energy experiments deserve mention. As part of a related study in this laboratory, the CID mass spectra of CH3CH+OH ions were recorded at laboratory energies of up to 50 V at which energy extensive fragmentation was observed. Argon and oxygen were essentiallyindistinguishable as target gases, apart from their different cross sections. Thus the unusual behavior of O2 is not observed in simple momentum-transfer encounters.

  20. Hart, W. J. v. d.Int.J. Mass Spectrom. Ion Processes 1995,151, 27.

    Article  Google Scholar 

  21. Burgers, P. C.; Mommers, A. A.; Holmes, J. L.J. Am. Chem. Soc. 1983,105, 5976.

    Article  CAS  Google Scholar 

  22. Sumathi, R.; Peyerimhoff, S. D.; Sengupta, D.J. Phys. Chem. A 1999,103, 772.

    Article  CAS  Google Scholar 

  23. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G.J. Phys. Chem. Ref. Data 1988,17, Supp. 1.

    Google Scholar 

  24. Calvert, J. G.; Pitts, J. N.Photochemistry; Wiley: New York, 1966.

    Google Scholar 

  25. Krupeni, P. H.J. Phys. Chem. Ref. Data 1972,1, 423.

    Article  Google Scholar 

  26. Herzberg, G.Atomic Spectra and Atomic Structure; Dover: New York, 1944.

    Google Scholar 

  27. Aubry, C.; Polce, M. J.; Holmes, J. L.; Mayer, P. M.; Radom, L.J. Am. Chem. Soc. 1997,119, 9030.

    Google Scholar 

  28. An, Y. Study of organic cations in the gas phase by tandem mass spectrometry. Ph.D. Thesis, University of Ottawa, 1996.

  29. Rodriguez, C. F.; Böhme, D. K.; Hopkinson, A. C.J. Am. Chem. Soc. 1993,115, 3263.

    Article  Google Scholar 

  30. Polasek, M.; Sadilek, M.; Turecek, F.Int. J. Mass Spectrom. 2000,195/196, 101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, C., Holmes, J. The behavior of oxygen as a collision-induced dissociation target gas. J. Am. Soc. Spectrom. 12, 23–29 (2001). https://doi.org/10.1016/S1044-0305(00)00201-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00201-4

Keywords

Navigation