Skip to main content
Log in

Electrospray ionization-Fourier transform ion cyclotron mass spectrometry using ion preselection and external accumulation for ultrahigh sensitivity

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The dynamic range of Fourier transform ion cyclotron mass spectrometry (FTICR) is typically limited by the useful charge capacity of an FTICR cell (to ∼106 to 107 elementary charges) and the minimum number of ions required to produce a useful signal (∼102 elementary charges). We show that the expansion of the dynamic range by 2 orders of magnitude can be achieved by preselecting lower abundance species in a quadrupole interface to an electrospray ionization (ESI) source. Ion preselection is then followed by ion accumulation in external to the FTICR cell a linear (2-D) quadrupole trap and subsequent transfer to the region of high magnetic field for gated trapping in the FTICR cell. Two modes of ion preselection, using either the quadrupole filtering mode or rf-only dipolar excitation, were studied and mass resolutions of 30 to 100 were achieved for selective external ion accumulation of peptides and proteins with molecular weights ranging from 500 to 17,000 Da. The ability to selectively eject the most abundant species before trapping in the FTICR has enormous practical benefits for increasing the sensitivity and dynamic range of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensen, P. K.; Pasa-Tolic, L.; Anderson, G. A.; Horner, J. A.; Lipton, M. S.; Bruce, J. E.; Smith, R. D.Anal. Chem. 1999,71, 2076–2084.

    Article  CAS  Google Scholar 

  2. Veenstra, T. D.; Martinovic, S.; Anderson, G. A.; Pasa-Tolic, L.; Smith, R. D.J. Am. Soc. Mass Spectrom. 2000,11, 78–82.

    Article  CAS  Google Scholar 

  3. Bruce, J. E.; Anderson, G. A.; Smith, R. D.Anal. Chem. 1996,68, 534–541.

    Article  CAS  Google Scholar 

  4. Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G.J. Am. Soc. Mass Spectrom. 1997,8, 970–976.

    Article  CAS  Google Scholar 

  5. McIver, R. U.S. patent 4,535,235, 1985.

  6. Wang, Y.; Shi, S. D.-H.; Hendrickson, C. L.; Marshall, A. G.Int. J. Mass Spectrom. 2000,198, 113–120.

    Article  CAS  Google Scholar 

  7. Hendrickson, C. L.; Quinn, J. P.; Emmett, M. R.; Marshall, A. G.Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics; Long Beach, California, 2000.

    Google Scholar 

  8. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.Mass Spectrom. Rev. 1990,9, 37.

    Article  CAS  Google Scholar 

  9. Barrinaga, C. J.; Edmonds, C. G.; Udseth, H. R.; Smith, R. D.Rapid Commun. Mass Spectrom. 1989,3, 160–164.

    Article  Google Scholar 

  10. March, R. E.; Hughes, R. J.Quadrupole Storage Mass Spectrometry: in Chemical Analysis; Winefordner, J. D., Ed.; Wiley: London, 1991, pp 31–52.

    Google Scholar 

  11. Campbell, J. M.; Collings, B. A.; Douglas, D. J.;Rapid Commun. Mass Spectrom. 1998,12, 1463–1474.

    Article  CAS  Google Scholar 

  12. Sudakov, M.; Konenkov, N.; Douglas, D. J.; Klebova, T.J. Am. Soc. Mass Spectrom. 2000,11, 10–18.

    Article  CAS  Google Scholar 

  13. Dehmelt, H. G.Adv. Atom. Mol. Phys. 1967,3, 53–72.

    Article  CAS  Google Scholar 

  14. Gerlich, D.Adv. Chem. Phys. 1992,LXXXII, 1–176.

    Article  Google Scholar 

  15. Belov, M. E.; Gorshkov, M. V.; Anderson, G. A.; Udseth, H. R.; Smith, R. D.Anal. Chem. 2000,72, 2271–2279.

    Article  CAS  Google Scholar 

  16. Belov, M. E.; Nikolaev, E. N.; Anderson, G. A.; Udseth, H. R.; Gorshkov, M. V.; Bailey, T.; Smith, R. D.Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics; Long Beach, California, 2000.

    Google Scholar 

  17. Belov, M. E.; Gorshkov, M. V.; Udseth, H. R.; Anderson, G. A.; Tolmachev, A. V.; Prior, D. C.; Harkewicz, R.; Smith, R. D.J. Am. Soc. Mass Spectrom. 2000,11, 19–23.

    Article  CAS  Google Scholar 

  18. Gorshkov, M. V.; Pasa-Tolic, L.; Udseth, H. R.; Anderson, G. A.; Huang, B. M.; Bruce, J. E.; Prior, D. C.; Hofstadler, S. A.; Tang, L.; Chen, L. -Z.; Willett, J. A.; Rockwood, A. L.; Sherman, M. S.; Smith, R. D.J. Am. Soc. Mass Spectrom. 1998,9, 692–700.

    Article  CAS  Google Scholar 

  19. Sannes-Lowery, K.; Griffey, R. H.; Kruppa, G. H.; Speir, J. P.; Hofstadler, S. A.Rapid Commun. Mass Spectrom. 1998,12, 1957–1961.

    Article  CAS  Google Scholar 

  20. Paul, W.; Steinwedel, H. Z.Naturforsch. Teil A 1953,8, 448–452.

    Google Scholar 

  21. Paul, W.; Raether, M.Z. Phys. 1955,140, 262–265.

    Article  Google Scholar 

  22. Beu, S. C.; Laude, D. A., Jr.Int. J. Mass Spectrom. Ion Processes 1991,104, 109–127.

    Article  CAS  Google Scholar 

  23. Chen, F. F.Plasma Physics and Controlled Fusion; Plenum: New York, 1984.

    Google Scholar 

  24. Landau, L. D.; Liftshitz, E. M.Mechanics; Pergamon: Oxford, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Smith.

Additional information

Visiting scientist from the Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, 117829 Moscow, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, M.E., Nikolaev, E.N., Anderson, G.A. et al. Electrospray ionization-Fourier transform ion cyclotron mass spectrometry using ion preselection and external accumulation for ultrahigh sensitivity. J. Am. Soc. Spectrom. 12, 38–48 (2001). https://doi.org/10.1016/S1044-0305(00)00198-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00198-7

Keywords

Navigation