Skip to main content
Log in

Comparison of negative and positive ion electrospray tandem mass spectrometry for the liquid chromatography tandem mass spectrometry analysis of oxidized deoxynucleosides

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Oxidized deoxynucleosides are widely used as biomarkers for DNA oxidation and oxidative stress assessment. Although gas chromatography mass spectrometry is widely used for the measurement of multiple DNA lesions, this approach requires complex sample preparation contributing to possible artifactual oxidation. To address these issues, a high performance liquid chromatography (HPLC)-tandem mass spectrometric (LC-MS/MS) method was developed to measure 8-hydroxy-2′-deoxyguanosine (8-OH-dG), 8-hydroxy-2′-deoxyadenosine (8-OH-dA), 2-hydroxy-2′-deoxyadenosine (2-OH-dA), thymidine glycol (TG), and 5-hydroxy-methyl-2′-deoxyuridine (HMDU) in DNA samples with fast sample preparation. In order to selectively monitor the product ions of these precursors with optimum sensitivity for use during quantitative LC-MS/MS analysis, unique and abundant fragment ions had to be identified during MS/MS with collision-induced dissociation (CID). Positive and negative ion electrospray tandem mass spectra with CID were compared for the analysis of these five oxidized deoxynucleosides. The most abundant fragment ions were usually formed by cleavage of the glycosidic bond in both positive and negative ion modes. However, in the negative ion electrospray tandem mass spectra of 8-OH-dG, 2-OH-dA, and 8-OH-dA, cleavage of two bonds within the sugar ring produced abundant S1 type ions with loss of a neutral molecule weighing 90 u, [M − H − 90]. The signal-to-noise ratio was similar for negative and positive ion electrospray MS/MS except in the case of thymidine glycol where the signal-to-noise was 100 times greater in negative ionization mode. Therefore, negative ion electrospray tandem mass spectrometry with CID would be preferred to positive ion mode for the analysis of sets of oxidized deoxynucleosides that include thymidine glycol. Investigation of the fragmentation pathways indicated some new general rules for the fragmentation of negatively charged oxidized nucleosides. When purine nucleosides contain a hydroxyl group in the C8 position, an S1 type product ion will dominate the product ions due to a six-membered ring hydrogen transfer process. Finally, a new type of fragment ion formed by elimination of a neutral molecule weighing 48 (CO2H4) from the sugar moiety was observed for all three oxidized purine nucleosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckman, K. B.; Ames, B. N.J. Biol. Chem. 1997,272, 19633–19636 and references therein.

    Article  CAS  Google Scholar 

  2. Dizdaroglu, M.Mutat. Res. 1992,275, 331–342.

    CAS  Google Scholar 

  3. Halliwell, B.Free Radic. Res. 1998,29, 469–486.

    Article  CAS  Google Scholar 

  4. Wiseman, H.; Halliwell, B.Biochem. J. 1996,313, 17–29 and references therein.

    CAS  Google Scholar 

  5. Breen, A. P.; Murphy, J. A.Free Rad. Biol. Med. 1995,18, 1033–1077.

    Article  CAS  Google Scholar 

  6. Cadet, J.; Delatour, T.; Douki, T.; Gasparutto, D.; Pouget, J. P.; Ravanat, J. L.; Sauvaigo, S.Mutat. Res. 1999,424, 9–21.

    CAS  Google Scholar 

  7. Ames, B. N.Science 1983,221, 1256–1264.

    Article  CAS  Google Scholar 

  8. Chen, L.; Bowen, P. E.; Berzy, D.; Aryee, F.; Stacewicz-Sapuntzakis, M.; Riley, R. E.Free Rad. Biol. Med. 1999,26, 695–703.

    Article  CAS  Google Scholar 

  9. Halliwell, B.; Dizdaroglu, M.Free Rad. Res. Commun. 1992,16, 75–87.

    Article  CAS  Google Scholar 

  10. Podmore, I. D.; Griffiths, H. R.; Herbert, K. E.; Mistry, N.; Mistry, P.; Lunec,J. Nature 1998,392, 559.

    Article  CAS  Google Scholar 

  11. Hofer, T.; Möller, L.Chem. Res. Toxicol. 1998,11, 882–887.

    Article  CAS  Google Scholar 

  12. Levine, M.; Daruwala, R. C.; Park, J. B.; Rumsey, S. C.; Wang, Y.; Poulsen, H. E.; Weimann, A.; Salonen, J. T.; Nyyssönen, K.; Loft, S.; Cadet, J.; Douki, T.; Ravanat, J. L.Nature 1998,395, 231–232.

    Article  CAS  Google Scholar 

  13. Leclercq, L.; Laurent, C.; DePauw, E.Anal. Chem. 1997,69, 1952–1955.

    Article  CAS  Google Scholar 

  14. Beland, F. A.; Doerge, D. R.; Churchwell, M. I.; Poirier, M. C.; Schoket, B.; Marques, M. M.Chem. Res. Toxicol. 1999,12, 68–77.

    Article  CAS  Google Scholar 

  15. Serrano, J.; Palmeira, C. M.; Wallace, K. B.; Kuehl, D. W.Rapid Commun. Mass Spectrom. 1996,10, 1789–1791.

    Article  CAS  Google Scholar 

  16. Ravanat, J. L.; Duretz, B.; Guiller, A.; Douki, T.; Cadet, J.J. Chromatogr. B Biomed. Sci. Appl. 1998,715, 349–356.

    Article  CAS  Google Scholar 

  17. Cadet, J.; Odin, F.; Mouret, J. F.; Polverelli, M.; Audic, A.; Giacomoni, P.; Favier, A.; Richard, M.J. Mutat. Res. 1992,275, 343–354.

    CAS  Google Scholar 

  18. Douki, T.; Delatour, T.; Bianchini, F.; Cadet,J. Carcinogenesis 1996,17, 347–353.

    Article  CAS  Google Scholar 

  19. Rehman, A.; Collis, C. S.; Yang, M.; Kelly, M.; Diplock, A. T.; Halliwell, B.; Rice-Evans, C.Biochem. Biophys. Res. Commun. 1998,246, 293–298.

    Article  CAS  Google Scholar 

  20. Saito, T.; Kanai, T.; Fujii, T.Chem. Pharm. Bull. 1993,41, 1850–1852.

    CAS  Google Scholar 

  21. Davoll, J.J. Am. Chem. Soc. 1951,73, 3174–3176.

    Article  CAS  Google Scholar 

  22. Frenkel, K.; Goldstein, M.; Duker, N.; Teebor, G.Biochemistry 1981,20, 750–754.

    Article  CAS  Google Scholar 

  23. Frenkel, K.; Zhong, Z.; Wei, H.; Karkoszka, J.; Patel, U.; Rashid, K.; Georgescu, M.; Solomon, J.J. Anal. Biochem. 1991,196, 126–136.

    Article  CAS  Google Scholar 

  24. Wilson, M. S.; McCloskey, J. A.J. Am. Chem. Soc. 1975,97, 3436–3444.

    Article  CAS  Google Scholar 

  25. Crow, F. W.; Tomer, K. B.; Gross, M. L.; McCloskey, J. A.; Bergstrom, D. E.Anal. Biochem. 1984,139, 243–262.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. van Breemen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Y., Wainhaus, S.B., Yang, Y. et al. Comparison of negative and positive ion electrospray tandem mass spectrometry for the liquid chromatography tandem mass spectrometry analysis of oxidized deoxynucleosides. J. Am. Soc. Spectrom. 12, 80–87 (2001). https://doi.org/10.1016/S1044-0305(00)00191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00191-4

Keywords

Navigation