Skip to main content
Log in

Insights into analyte electrolysis in an electrospray emitter from chronopotentiometry experiments and mass transport calculations

  • Focus: Electrospray
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Insights into the electrolysis of analytes at the electrode surface of an electrospray (ES) emitter capillary are realized through an examination of the results from off-line chronopotentiometry experiments and from mass transport calculations for flow through tubular electrodes. The expected magnitudes and trends in the interfacial potential in an ES emitter under different solution conditions and current densities, using different metal electrodes, are revealed by the chronopotentiometry data. The mass transport calculations reveal the electrode area required for complete analyte electrolysis at a given volumetric flow rate. On the basis of these two pieces of information, the design of ES emitters that may maximize and those that may minimize analyte electrolysis during ES mass spectrometry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell. Anal. Chem. 1991, 63, 2109–2114.

    Article  CAS  Google Scholar 

  2. Van Berkel, G. J.; Zhou, F. Characterization of an electrospray ion source as a controlled-current electrolytic cell. Anal. Chem. 1999, 64, 1586–1593.

    Article  Google Scholar 

  3. Van Berkel, G. J. In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997; Chap 1, pp 65–105.

    Google Scholar 

  4. Jackson, G. S.; Enke, C. G. Electrical equivalence of electrospray ionization with conducting and nonconducting needles. Anal. Chem. 1999, 71, 3777–3784.

    Article  CAS  Google Scholar 

  5. Kebarle, K.; Ho, Y. In Electrospray Ionization Mass Spectrometry; Cole, R. B., Ed.; Wiley: New York, 1997; Chap 2, pp 3–63.

    Google Scholar 

  6. Charbonnier, F.; Rolando, C.; Saru, F.; Hapiot, P.; Pinson, J. Short time-scale observation of an electrospray current. Rapid Commun. Mass Spectrom. 1993, 7, 707–710.

    Article  CAS  Google Scholar 

  7. Van Berkel, G. J.; McLuckey, S. A.; Glish, G. L. Electrochemical origin of radical cations observed in electrospray ionization mass spectra. Anal. Chem. 1992, 64, 1586–1593.

    Article  Google Scholar 

  8. Xu, X.; Nolan, S. P.; Cole, R. B. Electrochemical oxidation and nucleophilic addition reactions of metallocenes in electrospray mass spectrometry. Anal. Chem. 1994, 66, 119–125.

    Article  CAS  Google Scholar 

  9. Dupont, A.; Gisselbrecht, J. P.; Leize, E.; Wagner, L.; Van Dorsselaer, A. Electrospray mass-spectrometry of electrochemically ionized molecules—Application to the study of fullerenes. Tetrahedron Lett. 1994, 35, 6083–6086.

    Article  CAS  Google Scholar 

  10. Van Berkel, G. J.; Zhou, F. Electrospray as a controlled-current electrolytic flow cell: Electrochemical ionization of neutral analytes for detection by electrospray mass spectrometry. Anal. Chem. 1995, 67, 3958–3964.

    Article  Google Scholar 

  11. Hiraoka, K.; Aizawa, K.; Murata, K. Electrochemical reduction and highly-sensitive analysis of iodine in electrospray mass spectrometry. J. Mass Spectrom. Soc. Jpn. 1995, 43, 77–83.

    CAS  Google Scholar 

  12. Van Berkel, G. J.; Zhou, F. Observation of gas-phase molecular dications formed from neutral organics in solution via the controlled-current electrolytic process inherent to electrospray. J. Am. Soc. Mass Spectrom. 1996, 7, 157–162.

    Article  Google Scholar 

  13. Karancsi, T.; Slégel, P.; Novák, I.; Pirok, G.; Kovács, P.; Vékey, K. Unusual behavior of some isochromene and benzofuran derivatives during electrospray ionization. Rapid. Commun. Mass Spectrom. 1997, 11, 81–84.

    Article  CAS  Google Scholar 

  14. Vandell, V. E.; Limbach, P. A. Electrospray ionization mass spectrometry of metalloporphyrins. J. Mass Spectrometry 1998, 33, 212–220.

    Article  CAS  Google Scholar 

  15. McCarley, T. D.; Lufaso, M. W.; Curtin, L. S.; McCarley, R. L. Multiply charged redox-active oligomers in the gas phase: Electrolytic electrospray ionization mass spectrometry of metallocenes. J. Phys. Chem. B. 1998, 102, 10078–10086.

    Article  CAS  Google Scholar 

  16. Van Berkel, G. J.; Quirke, J. M. E.; Tigani, R. A.; Dilley, A. S.; Covey, T. R. Derivatization for electrospray ionization mass spectrometry. 3. Electrochemically ionizable derivatives. Anal. Chem. 1998, 70, 1544–1554.

    Article  Google Scholar 

  17. Bateman, K. P. Electrochemical properties of capillary electrophoresis-nanoelectrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 1999, 10, 309–317.

    Article  CAS  Google Scholar 

  18. Schoener, D. F.; Olsen, M. A.; Cummings, P. G.; Basic, C. Electrospray ionization of neutral metal dithiocarbamate complexes using in-source oxidation. J. Mass Spectrom. 1999, 34, 1069–1078.

    Article  CAS  Google Scholar 

  19. Van Berkel, G. J.; Zhou, F.; Aronson, J. T. Changes in bulk solution pH caused by the inherent controlled-current electrolytic process of an electrospray ion source. Int. J. Mass Spectrom. Ion Processes 1997, 162, 55–67.

    Article  Google Scholar 

  20. Van Berkel, G. J.; Electrolytic corrosion of a stainless-steel electrospray emitter monitored using an electrospray-photodiode array system. J. Anal. At. Spectrom. 1998, 13, 603–607.

    Article  Google Scholar 

  21. Van Berkel, G. J.; Giles, G. E.; Bullock, J. S., IV; Gray, L. J. Computational simulation of redox reactions within a metal electrospray emitter. Anal. Chem. 1999, 71, 5288–5296.

    Article  Google Scholar 

  22. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980.

    Google Scholar 

  23. Dobos, D. Electrochemical Data; Elsevier: Amsterdam, 1975.

    Google Scholar 

  24. Wilm, M.; Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 1996, 68, 1–8.

    Article  CAS  Google Scholar 

  25. Chen, L.; Colyer, C. L.; Kamau, M. G.; Myland, J. C.; Oldham, K. B.; Symons, P. G. Microtube flowing coulometry. Can. J. Chem. 1994, 72, 836.

    Article  CAS  Google Scholar 

  26. Kuwana, T.; Bublitz, D. E.; Hoh, G. Chronopotentiometric studies on the oxidation of ferrocene, ruthenocene, osmocene and some of their derivatives. J. Am. Chem. Soc. 1960, 82, 5811–5817.

    Article  CAS  Google Scholar 

  27. Hayati, I. Eddies inside a liquid cone stressed by interfacial electricial shear. Colloids Surf. 1992, 65, 77–84.

    Article  CAS  Google Scholar 

  28. Morand, K.; Talbo, G.; Mann, M. Oxidation of peptides during electrospray ionization. Rapid Commun. Mass Spectrom. 1993, 7, 738–743.

    Article  CAS  Google Scholar 

  29. Moini, M.; Cao, P.; Bard, A. J. Hydroquinone as a buffer additive for suppression of bubbles formed by electrochemical oxidation of the CE buffer at the outlet electrode in capillary electrophoresis/electrospray ionization-mass spectrometry. Anal. Chem. 1999, 71, 1658–1661.

    Article  CAS  Google Scholar 

  30. Severs, J. C.; Harms, A. C.; Smith, R. D. A new high-performance interface for capillary electrophoresis/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1175–1178.

    Article  CAS  Google Scholar 

  31. Severs, J. C.; Smith, R. D. Characterization of the microdialysis junction interface for capillary electrophoresis/microelectrospray ionization mass spectrometry. Anal. Chem. 1997, 69, 2154–2158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Van Berkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Berkel, G.J. Insights into analyte electrolysis in an electrospray emitter from chronopotentiometry experiments and mass transport calculations. J. Am. Soc. Spectrom. 11, 951–960 (2000). https://doi.org/10.1016/S1044-0305(00)00175-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00175-6

Keywords

Navigation