Skip to main content
Log in

Application of simultaneous excitation/detection to generate real-time excitation profiles in Fourier transform ion cyclotron resonance mass spectrometry

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Simultaneous excitation/detection (SED), which permits observation of ion motion during an excitation event, is used to generate real-time Fourier transform ion cyclotron resonance (FTICR) excitation profiles that track the radial extent of ion motion in a trapped-ion cell. The conventional FTICR excitation profile is collected in a series of individual experiments in which peak magnitude is monitored as excitation voltage is increased. In contrast, SED permits the single-scan detection of ion cyclotron motion within the trapped-ion cell and consequently yields the data that produces a real-time excitation profile. Data analysis techniques are presented that facilitate conversion of a time domain SED profile into an excitation profile. An order of magnitude decrease in the amount of time is required to acquire an excitation profile, while the precision of the measurement is improved. To demonstrate the utility of the technique, it is applied to the study of axial and radial ion loss mechanisms for argon, benzene, and acetophenone ions under different conditions. SED excitation profiles are also used to illustrate the facility of quadrupolar excitation for minimizing radial ion loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, A. G.; Comisarow, M. B. Chem. Phys. Lett. 1974, 25, 282–283.

    Article  Google Scholar 

  2. Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Mass Spectrom. Rev. 1998, 17, 1–35.

    Article  CAS  Google Scholar 

  3. Anderson, J. S.; Vartanian, V. H.; Laude, D. A. Trends Anal. Chem. 1994, 13, 234–239.

    Article  CAS  Google Scholar 

  4. Wang, M.; Marshall, A. G. Anal. Chem. 1989, 61, 1288–1293.

    Article  CAS  Google Scholar 

  5. Hanson, C. D.; Castro, M. E.; Kerley, E. L.; Russell, D. H. Anal. Chem. 1990, 62, 520–526.

    Article  CAS  Google Scholar 

  6. Anderson, J. S.; Laude, D. A. The 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, Oregon, 1996; p 483.

  7. Anderson, J. S. Ph.D. Thesis, The University of Texas at Austin, 1996.

  8. Hendrickson, C. L.; Hofstadler, S. A.; Beu, S. C.; Laude, D. A. Int. J. Mass Spectrom. Ion Processes 1993, 123, 49–58.

    Article  CAS  Google Scholar 

  9. Guan, S.; Huang, Y.; Xin, T.; Marshall, A. G. Rapid Commun. Mass Spectrom. 1996, 10, 1855–1859.

    Article  CAS  Google Scholar 

  10. Francl, T. J.; Fukuda, E. K.; McIver, R. T. Int. J. Mass Spectrom. Ion Phys. 1983, 50, 151–167.

    Article  CAS  Google Scholar 

  11. Savard, G.; Becker, S.; Bollen, G.; Kluge, H.-J.; Moore, R. B.; Otto, T.; Schweikhard, L.; Stolzenberg, H.; Wiess, U. Phy. Lett. A 1991, 158, 247–252.

    Article  CAS  Google Scholar 

  12. Grosshans, P. B.; Shields, P. J.; Marshall, A. G. J. Chem. Phys. 1991, 94, 5341–5352.

    Article  CAS  Google Scholar 

  13. Campbell, V. L.; Guan, Z.; Vartanian, V. H.; Laude, D. A. Anal. Chem. 1995, 67, 420–425.

    Article  CAS  Google Scholar 

  14. Vartanian, V. H.; Anderson, J. S.; Laude, D. A. Mass Spectrom. Rev. 1995, 14, 1–19.

    Article  CAS  Google Scholar 

  15. Vartanian, V. H.; Laude, D. A. J. Am. Soc. Mass Spectrom. 1995, 6, 812–821.

    Article  CAS  Google Scholar 

  16. Vartanian, V. H.; Laude, D. A. Int. J. Mass Spectrom. Ion Processes 1995, 141, 189–200.

    Article  CAS  Google Scholar 

  17. Kuhnen, F.; Wanczek, K. P. Int. J. Mass Spectrom. Ion Processes 1998, 173, 81–90.

    Article  CAS  Google Scholar 

  18. Marshall, A. G.; Grosshans, P. B. Anal. Chem. 1991, 63, 2057–2061.

    Article  Google Scholar 

  19. Vartanian, V. H.; Laude, D. A. Int. J. Mass Spectrom. Ion Processes 1998, 178, 173–186.

    CAS  Google Scholar 

  20. Vartanian, V. H.; Laude, D. A. Anal. Chem. 1996, 68, 1321–1327.

    Article  CAS  Google Scholar 

  21. Beu, S. C.; Laude, D. A. Anal. Chem. 1992, 64, 177–180.

    Article  CAS  Google Scholar 

  22. Beu, S. C.; Laude, D. A. Int. J. Mass Spectrom. Ion Processes 1992, 112, 215–230.

    Article  CAS  Google Scholar 

  23. Caravatti, P.; Allemann, M. Org. Mass Spectrom. 1991, 26, 514–518.

    Article  CAS  Google Scholar 

  24. Wang, M.; Marshall, A. G. Anal. Chem. 1990, 62, 515–520.

    Article  CAS  Google Scholar 

  25. Guan, S.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 261–296.

    Article  Google Scholar 

  26. Grosshans, P. B.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes 1990, 100, 347–379.

    Article  CAS  Google Scholar 

  27. Riegner, D. E.; Laude, D. A. Int. J. Mass Spectrom. Ion Processes 1992, 120, 103–116.

    Article  CAS  Google Scholar 

  28. Schweikhard, L.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1993, 4, 433–452.

    Article  CAS  Google Scholar 

  29. Rempel, D. L.; Huang, S. K.; Gross, M. L. Int. J. Mass Spectrom. Ion Processes 1986, 70, 163–184.

    Article  CAS  Google Scholar 

  30. Riegner, D. E.; Hofstadler, S. A.; Laude, D. A. Anal. Chem. 1991, 63, 261–268.

    Article  CAS  Google Scholar 

  31. Beu, S. C.; Laude, D. A. Int. J. Mass Spectrom. Ion Processes 1991, 108, 255–268.

    Article  CAS  Google Scholar 

  32. Giancaspro, C.; Verdun, F. R. Anal. Chem. 1986, 58, 2097–2099.

    Article  CAS  Google Scholar 

  33. Dunbar, R. C.; Chen, J. H.; Hays, J. D. Int. J. Mass Spectrom. Ion Processes 1984, 57, 39–56.

    Article  CAS  Google Scholar 

  34. Kofel, P.; Allemann, M.; Kellerhals, H. P.; Wanczek, K. P. Int. J. Mass Spectrom. Ion Processes 1986, 74, 1–12.

    Article  CAS  Google Scholar 

  35. Huang, S. K.; Rempel, D. L.; Gross, M. L. Int. J. Mass Spectrom. Ion Processes 1986, 72, 15–31.

    Article  CAS  Google Scholar 

  36. van der Hart, W. J.; van de Guchte, W. J. Int. J. Mass Spectrom. Ion Processes 1988, 82, 17–31.

    Article  Google Scholar 

  37. Sharp, T. E.; Eyler, J. R.; Li, E. Int. J. Mass Spectrom. Ion Phys. 1972, 9, 421–439.

    Article  CAS  Google Scholar 

  38. Guan, S.; Marshall, A. G. J. Chem. Phys. 1993, 98, 4486–4493.

    Article  CAS  Google Scholar 

  39. Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Chem. Rev. 1994, 94, 2161–2182.

    Article  CAS  Google Scholar 

  40. Guan, S.; Wahl, M. C.; Marshall, A. G. J. Chem. Phys. 1994, 100, 6137–6140.

    Article  CAS  Google Scholar 

  41. Beu, S. C. First North American FTICR MS Conference, NHMFL; Tallahassee, FL, March 13–15, 1997.

  42. Beu, S. C. Proceedings from the 46th ASMS Conference on Mass Spectrometry and Allied Topics; Orlando, FL, 1998; p 502.

  43. Beu, S. C. Proceedings from the 47th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, TX, 1999; pp 865–866.

  44. Fiorentino, M. A.; Armorgan, C. A. P. Proceedings from the 47th ASMS Conference on Mass Spectrometry and Allied Topics; Dallas, TX, 1999; pp 506–507.

  45. Schmidt, E. G.; Fiorentino, M. A.; Arkin, C. R.; Laude, D. A. Anal. Chem. 2000, 72, 3668–3672.

    Article  Google Scholar 

  46. Senko, M. W.; Canterbury, J. D.; Guan, S.; Marshall, A. G. Rapid Commun. Mass Spectrom. 1996, 10, 1839–1844.

    Article  CAS  Google Scholar 

  47. Drader, J. J.; Stone, D.-H. S.; Freitas, M. A.; Hendrickson, C. L.; Marshall, A. G. The 46th ASMS Conference on Mass Spectrometry and Allied Topics; Orlando, Florida, 1998; p 499.

  48. Anderson, G. A.; Bruce, J. E.; Smith, R. D. ICR-2LS, version 2.19, Pacific Northwest National Laboratories, Richland, WA, 1996.

    Google Scholar 

  49. The beam voltage of 20 eV used was considerably lower than the typical 70 eV used in commercial mass spectrometers to allow the analyte of interest to be ionized without ionizing the helium buffer gas.

  50. Marshall, A. G.; Verdun, F. R. Fourier Transforms in NMR, Optical and Mass Spectrometry: A User’s Handbook; Elsevier: New York, 1990; p 80.

    Google Scholar 

  51. Hendrickson, C. L.; Drader, J. J.; Laude, D. A. J. Am. Soc. Mass Spectrom. 1995, 6, 448–452.

    Article  CAS  Google Scholar 

  52. For clarity, only every 3rd data point is displayed in the SED profiles of Figures 1b, 2a, 3, and 4. Every 6th data point is displayed for Figure 5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Laude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, E.G., Arkin, C.R., Fiorentino, M.A. et al. Application of simultaneous excitation/detection to generate real-time excitation profiles in Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Spectrom. 11, 1009–1015 (2000). https://doi.org/10.1016/S1044-0305(00)00173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00173-2

Keywords

Navigation