Skip to main content
Log in

Formation and decompositions of chloride adduct ions, [M + Cl], in negative ion electrospray ionization mass spectrometry

  • Focus: Electrospray
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The ability to promote chloride-attachment ions of the form [M + Cl] in negative ion electrospray ionization mass spectrometry (ESI-MS) has been developed using chlorinated solvents such as chloroform and carbon tetrachloride. This approach expands the current capabilities of negative ion ESI-MS by enabling detection of analytes that lack acidic sites and thus exhibit weak [M − H] signals. In contrast to the remote-site collision-induced dissociation (CID) often observed in positive ion ESI-MS/MS for alkali metal cation adducts, the decomposition of chloride adducts usually proceeds via competitive dissociations to form Cl, which is not structurally informative, or [M − H]. The latter can provide structural information via consecutive decompositions. For compounds having higher gas-phase acidities than HCl, a low CID collision energy can promote the formation of [M − H], whereas for the majority of compounds with lower gas phase acidities than HCl, higher collision energies generally improve the relative yield of [M − H]. Because chloride attachment occurs primarily at electrophilic hydrogens, the daughter ion ratio, Cl/[M − H], depends primarily upon the difference in gas phase acidity between the analyte molecule and HCl. At higher collision energies, entropic factors take on increased importance in determining the product ratio. The difference between the ΔS 0 terms for formation of Cl and formation of [M − H]− has been estimated for a series of substituted phenols and a series of acetic acid analogs. Finally, a novel neutral loss of CH3Cl from glycerophosphocholine and from ganglioside GM3 methyl ester is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. J. Chem. Phys. 1968, 49, 2240–2249.

    Article  CAS  Google Scholar 

  2. Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4671–4675.

    Article  CAS  Google Scholar 

  3. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64–71.

    Article  CAS  Google Scholar 

  4. Hofstadler, S. A.; Swanek, F. D.; Gale, D. C.; Ewing, A. G.; Smith, R. D. Anal. Chem. 1995, 67, 1477–1480.

    Article  CAS  Google Scholar 

  5. Valaskovic, G. A.; Kelleher, N. L.; McLafferty, F. W. Science 1996, 273, 1199–1202.

    Article  CAS  Google Scholar 

  6. Ganem, B.; Li, Y.-T.; Henion, J. D. J. Am. Chem. Soc. 1991, 113, 6294–6296.

    Article  CAS  Google Scholar 

  7. Loo, J. A. Mass Spectrom. Rev. 1997, 16, 1–23.

    Article  CAS  Google Scholar 

  8. Biochemical and Biotechnological Applications of Electrospray Mass Spectrometry; Snyder, A. P., Ed. ACS Symp. Ser.; American Chemical Society: Washington, DC, 1995.

    Google Scholar 

  9. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation & Applications; Cole, R. B., Ed.; Wiley: New York, 1997.

    Google Scholar 

  10. Mass Spectrometry of Biological Materials; 2nd ed.; Larsen, B. S.; McEwen, C. N., Ed.; Dekker; New York, 1998.

    Google Scholar 

  11. Tannenbaum, H. P.; Roberts, J. D.; Dougherty, R. C. Anal. Chem. 1975, 47, 49–53.

    Article  CAS  Google Scholar 

  12. Dougherty, R. C.; Roberts, J. D. Anal. Chem. 1975, 47, 54–59.

    Article  CAS  Google Scholar 

  13. Dougherty, R. C. Anal. Chem. 1981, 53, 625A-636A.

    Article  CAS  Google Scholar 

  14. Parker, C. E.; Yamaguchi, K.; Harvan, D. J.; Smith, R. W.; Hass, J. R. J. Chromatogr. 1985, 319, 273–283.

    Article  CAS  Google Scholar 

  15. Geerdink, R. B.; Maris, F. A.; De Jong, G. J.; Frei, R. W.; Brinkman, U. A. Th. J. Chromatogr. 1987, 394, 51–64.

    Article  CAS  Google Scholar 

  16. Barceló, D.; Maris, F. A.; De Jong, G. J.; Frei, R. W.; Brinkman, U. A. Th. J. Chromatogr. 1987, 394, 65–76.

    Article  Google Scholar 

  17. Kuksis, A.; Marai, L.; Myher, J. J. J. Chromatogr. 1991, 588, 73–87.

    Article  CAS  Google Scholar 

  18. Kuksis, A.; Marai, L.; Myher, J. J. Lipids 1991, 26, 240–246.

    Article  CAS  Google Scholar 

  19. Marai, L.; Kuksis, A.; Myher, J. J.; Itabashi, Y. Biol. Mass. Spectrom. 1992, 21, 541–547.

    Article  CAS  Google Scholar 

  20. Kalinoski, H. T.; Hargis, L. O. J. Chromatogr. 1990, 505, 199–213.

    Article  CAS  Google Scholar 

  21. Cole, R. B.; Harrata, A. K. Rapid Commun. Mass Spectrom. 1992, 6, 536–539.

    Article  CAS  Google Scholar 

  22. Wampler, F. M.; Blades, A. T.; Kebarle, P. J. Am. Soc. Mass Spectrom. 1993, 4, 289–295.

    Article  CAS  Google Scholar 

  23. Cole, R. B.; Harrata, A. K. J. Am. Soc. Mass. Spectrom. 1993, 4, 546–556.

    Article  CAS  Google Scholar 

  24. Straub, R. F.; Voyksner, R. D. J. Am. Soc. Mass Spectrom. 1993, 4, 578–587.

    Article  CAS  Google Scholar 

  25. Bruins, A. P.; Covey, T. R.; Henion, J. D. Anal. Chem. 1987, 59, 2642–2646.

    Article  CAS  Google Scholar 

  26. Siu, K. W. M.; Gardner, G. J.; Berman, S. S. Org. Mass Spectrom. 1989, 24, 931–942.

    Article  CAS  Google Scholar 

  27. Loo, J. A.; Ogorzalek, Loo, R. R.; Light, K. J.; Edmonds, C. G.; Smith, R. D. Anal. Chem. 1992, 64, 81–88.

    Article  CAS  Google Scholar 

  28. Straub, R. F.; Voyksner, R. D. J. Chromatogr. 1992, 627, 173–186.

    Article  CAS  Google Scholar 

  29. Harrata, A. K.; Domelsmith, L. N.; Cole, R. B. Biol. Mass Spectrom. 1993, 22, 59–67.

    Article  CAS  Google Scholar 

  30. Cheng, X.; Gao, Q.; Smith, R. D.; Sinanek, E. E.; Mammen, M.; Whiteside, G. M. Rapid Commun. Mass Spectrom, 1995, 9, 312–316.

    Article  CAS  Google Scholar 

  31. Ii, T.; Ohashi, Y.; Matsuzaki, Y.; Ogawa, T.; Nagai, Y. Org. Mass Spectrom. 1993, 28, 1340–1344.

    Article  CAS  Google Scholar 

  32. Zhu, J.; Li, Y.-T.; Li, S.-C.; Cole, R. B. Glycobiology 1999, 9, 985–993.

    Article  CAS  Google Scholar 

  33. Cole, R. B.; Zhu, J. Rapid Commun. Mass Spectrom. 1999, 13, 607–611.

    Article  CAS  Google Scholar 

  34. Bertran, J.; Gallardo, I.; Moreno, M.; Saveant, J. M. J. Am. Chem. Soc. 1992, 114, 9576–9583.

    Article  CAS  Google Scholar 

  35. Rifi, M. R., “Electrochemical reduction of organic halides”, in Organic Electrochemistry: An Introduction and A Guide; Baizer, M. M., Ed.; Dekker: New York, 1973; p 286.

    Google Scholar 

  36. Tang, L.; Kebarle, P. Anal. Chem. 1991, 63, 2709–2715.

    Article  CAS  Google Scholar 

  37. Tang, L.; Kebarle, P. Anal. Chem. 1993, 65, 3654–3668.

    Article  CAS  Google Scholar 

  38. Wang, G.; Cole, R. B. Anal. Chem. 1994, 66, 3702–3708.

    Article  CAS  Google Scholar 

  39. Lange’s Handbook of Chemistry, 11th Ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 1973.

    Google Scholar 

  40. McEwen, W. K. J. Am. Chem. Soc. 1936, 58, 1124–1129.

    Article  CAS  Google Scholar 

  41. Dolman, D.; Stewart, R. Can. J. Chem. 1967, 45, 911–924.

    Article  CAS  Google Scholar 

  42. Kebarle, P.; Ho, Y. “On the mechanism of electrospray mass spectrometry” in Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; R. B. Cole, Ed.; Wiley-Interscience: New York, 1997; pp 3–63.

    Google Scholar 

  43. Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.

    Google Scholar 

  44. Wang, G.; Cole, R. B. “Solution, gas-phase, and instrumental parameter influences on charge state distributions in electrospray ionization mass spectrometry” in Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications, R. B. Cole, Ed.; Wiley-Interscience: New York, 1997; pp 137–174.

    Google Scholar 

  45. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spec. Rev. 1994, 13, 287–339.

    Article  CAS  Google Scholar 

  46. Forst, W. Theory of Unimolecular Reactions; Academic: New York, 1973.

    Google Scholar 

  47. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific: Brookine Village, MA, 1990.

    Google Scholar 

  48. Majumdar, T. K.; Clairet, F.; Tabet, J.-C.; Cooks, R. G. J. Am. Chem. Soc. 1992, 114, 2897–2903.

    Article  CAS  Google Scholar 

  49. Cheng, X.; Wu, Z.; Fenselau, C. J. Am. Chem. Soc. 1993, 115, 4844–4848.

    Article  CAS  Google Scholar 

  50. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287–339.

    Article  CAS  Google Scholar 

  51. Cooks, R. G.; Wong, P. S. H., Acc. Chem. Res. 1998, 31, 379–386.

    Article  CAS  Google Scholar 

  52. Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1996, 118, 11884–11892.

    Article  CAS  Google Scholar 

  53. Harrison, K. A.; Murphy, R. C. J. Mass. Spectrom. 1995, 30, 1772–1773.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Cole, R.B. Formation and decompositions of chloride adduct ions, [M + Cl], in negative ion electrospray ionization mass spectrometry. J. Am. Soc. Spectrom. 11, 932–941 (2000). https://doi.org/10.1016/S1044-0305(00)00164-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00164-1

Keywords

Navigation