Skip to main content
Log in

Intrinsic Ca2+ affinities of peptides: Application of the kinetic method to analogs of calcium-binding site III of rabbit skeletal troponin C

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

We extended the kinetic method to determine the intrinsic affinities of nonvolatile organic molecules with divalent metal ions and then applied the amended method to determine the calcium affinities of peptide analogs of the calcium-binding site III of rabbit skeletal troponin C. Metal-bis(peptide) complexes of the composition ([H2Pi + H2Pii] − H + Ca)+, where H2P is a neutral peptide, were introduced into the gas phase by fast atom bombardment. The extended kinetic method recognizes that the dissociation characteristics of a singly charged, bis(peptide) complexes of divalent metal ions are determined by not only the metal—ion affinity but also the proton affinities of the neutral and deprotonated peptides. The modified method requires one to measure the relative abundances of [H2P − H + Ca]+, [H2P + H]+, and [H2P − H] ions that form upon collisional activation of mixed peptide/metal complexes, proton-bound peptide dimers, and deprotonated peptide dimers, respectively. We found, by using the modified method, that the set of peptides has a different affinity order than that in solution. Peptides with one aspartic acid have a higher intrinsic Ca2+ affinity than those with two aspartates. The location of the aspartic acid (Asp) residues at various positions also affects the Ca2+ affinity. Those peptides with one Asp in the middle of the chain have higher Ca2+ affinities than those with Asp on the end because the former peptides offer greater polarizability to stabilize the charge. Peptides with two Asp’s located in close proximity have higher intrinsic calcium affinities than those with aspartates positioned further apart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentrout, P. B.Acc. Chem. Res. 1995,28, 430.

    Article  CAS  Google Scholar 

  2. Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P.Int. J. Mass Spectrom. Ion Processes 1990,10, 325.

    Article  Google Scholar 

  3. Anderson, S. G.; Blades, A. T.; Klassen, J.; Kebarle, P.Int. J. Mass Spectrom. Ion Processes 1995,141, 217.

    Article  CAS  Google Scholar 

  4. Chu, I. H.; Zhang, H.; Dearden, D. V.J. Am. Chem. Soc. 1993,115, 5736.

    Article  CAS  Google Scholar 

  5. Wu, H.-F.; Brodbelt, J. S.J. Am. Soc. Mass Spectrom. 1993,4, 718.

    Article  CAS  Google Scholar 

  6. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A.Mass Spectrom. Rev. 1994,13, 287.

    Article  CAS  Google Scholar 

  7. Cooks, R. G.; Kruger, T. L.J. Am. Chem. Soc. 1977,99, 1279.

    Article  CAS  Google Scholar 

  8. McLuckey, S. A.; Cameron, D.; Cooks, R. G.J. Am. Chem. Soc. 1981,103, 1313.

    Article  CAS  Google Scholar 

  9. Cheng, X.; Wu, Z.; Fenselau, C.J. Am. Chem. Soc. 1993,115, 4844.

    Article  CAS  Google Scholar 

  10. Kaltashov, I. A.; Fenselau, C. C.J. Am. Chem. Soc. 1995,117, 9906.

    Article  CAS  Google Scholar 

  11. Bojesen, G.; Briendahl, T.J. Chem. Soc. Perkins Trans. 1994,2, 1029.

    Article  Google Scholar 

  12. Bojesen, G.J. Am. Chem. Soc. 1987,109, 5557.

    Article  CAS  Google Scholar 

  13. Isa, K.; Omote, T.; Amaya, M.Org. Mass Spectrom. 1990,25, 620.

    Article  CAS  Google Scholar 

  14. Wu, Z.; Fenselau, C.Rapid Commun. Mass Spectrom. 1992,6, 403.

    Article  CAS  Google Scholar 

  15. Wu, Z.; Fenselau, C.J. Am. Soc. Mass Spectrom. 1993,3, 863.

    Article  Google Scholar 

  16. Wu, Z.; Fenselau, C.Tetrahedron 1993,49, 9197.

    Article  CAS  Google Scholar 

  17. Zhang, K.; Zimmerman, D. M.; Chung-Phillips, A.; Cassady, C. J.J. Am. Chem. Soc. 1993,115, 10812.

    Article  CAS  Google Scholar 

  18. Greco, F.; Liguori, A.; Sindona, G.; Uecella, N.J. Am. Chem. Soc. 1990,112, 9092.

    Article  CAS  Google Scholar 

  19. Liguori, A.; Napoli, A.; Sindona, G.Rapid Commun. Mass Spectrom. 1994,8, 89.

    Article  CAS  Google Scholar 

  20. Cerda, B. A.; Wesdemiotis, C.J. Am. Chem. Soc. 1996,118, 11884.

    Article  CAS  Google Scholar 

  21. Creighton, T. E.Proteins: Structure and Molecular Properties, 2nd ed.; Freeman: New York, 1993; p 507.

    Google Scholar 

  22. Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S.Bioinorganic Chemistry; University Science Book: Mill Valley, CA, 1994; p 107.

    Google Scholar 

  23. Baker, W. C.; Ketcham, L. K.; Dayhoff, M. O. InAtlas of Protein Sequence and Structure, Vol. 5; Dayhoff, M. O., Ed.; National Biomedical Research: Silver Spring, MD, 1979.

    Google Scholar 

  24. Vogt, H. P.; Strassburger, W.; Wollmer, A.; Fleischhauer, J.; Bullard, B.; Mercola, D.J. Theor. Biol. 1979,76, 297.

    Article  CAS  Google Scholar 

  25. Reid, R. E.; Hodges, R. S.J. Theor. Biol. 1980,84, 401.

    Article  CAS  Google Scholar 

  26. Gariépy, J.; Hodges, R. S.FEBS Lett. 1983,160, 1.

    Article  Google Scholar 

  27. Kretsinger, R. H.; Nockolds, C. E.J. Biol. Chem. 1973,248, 3313.

    CAS  Google Scholar 

  28. Herrberg, O.; Moult, J.; James, M. N. G.Methods Enzymol. 1987,139, 610.

    Article  Google Scholar 

  29. Strydnaka, N. C. J.; James, M. N. G.Annu. Rev. Biochem. 1989,58, 951.

    Article  Google Scholar 

  30. Gariépy, J.; Sykes, B. D.; Hodges, R. S.Biochemistry 1983,22, 1765.

    Article  Google Scholar 

  31. Gariépy, J.; Kay, L. E.; Kuntz, I. D.; Sykes, B. D.; Hodges, R. S.Biochemistry 1985,24, 544.

    Article  Google Scholar 

  32. Marsden, B. J.; Hodges, R. S.; Sykes, B. D. InCalcium-Binding Proteins in Health and Disease; Norman, A. W.; Vanaman, T. C.; Means, A. R., Eds.; Academic: San Diego, 1987; p 412.

    Google Scholar 

  33. Marsden, B. J.; Hodges, R. S.; Sykes, B. D.Biochemistry 1988,27, 4198.

    Article  CAS  Google Scholar 

  34. Marsden, B. J.; Hodges, R. S.; Sykes, B. D.Biochemistry 1989,28, 8839.

    Article  CAS  Google Scholar 

  35. Shaw, G. S.; Hodges, R. S.; Sykes, B. D.Biochemistry 1991,30, 8339.

    Article  CAS  Google Scholar 

  36. Hu, P.; Gross, M. L.J. Am. Chem. Soc. 1992,114, 9161.

    Article  CAS  Google Scholar 

  37. Hu, P.; Gross, M. L.J. Am. Chem. Soc. 1992,114, 9153.

    Article  CAS  Google Scholar 

  38. Hu, P.; Ye, Q-Z.; Loo, J. A.Anal. Chem. 1994,66, 4190.

    Article  CAS  Google Scholar 

  39. Teesch, L. M.; Adams, J.J. Am. Chem. Soc. 1990,112, 4110.

    Article  CAS  Google Scholar 

  40. Zhao, H.; Reiter, A.; Teesch, L. M.; Adams, J.J. Am. Chem. Soc. 1993,115, 2854.

    Article  CAS  Google Scholar 

  41. Guide to Ion Exchange; BioRad Chem. Div., Bio Rad Lab.; p 6 Catalog Number 140-9997.

  42. Gross, M. L. InMethods in Enzymology, Vol. 193, Mass Spectrometry; McCloskey, J. A., Ed.; Academic: San Diego, 1990; p 131.

    Google Scholar 

  43. Vollmer, D. L.; Gross, M. L.J. Mass Spectrom. 1995,30, 113.

    Article  CAS  Google Scholar 

  44. Sigel, H.; Martin, R. B.Chem. Rev. 1982, 385.

  45. Meot-Ner, M.J. Am. Chem. Soc. 1988,110, 3071.

    Article  Google Scholar 

  46. Meot-Ner, M.J. Am. Chem. Soc. 1988,110, 3075.

    Article  Google Scholar 

  47. Bartmess, J. E.; McIver, B. T. InGas Phase Ion Chemistry, Vol. 2; Bowers, M. T., Ed.; Academic: New York, 1979, p 87.

    Google Scholar 

  48. McMahon, T. B.; Kebarle, P.J. Am. Chem. Soc. 1976,98, 3399.

    Article  CAS  Google Scholar 

  49. Lee, G. L.; Van Orden, H. O.; Ragsdale, R. O.General and Organic Chemistry; W. B. Saunders Co., Philadelphia, PA, 1971, pp 700–701.

    Google Scholar 

  50. Hunter, E. P.; Lias, S. G., Evaluated gas phase basicities and proton affinities of molecules: An update,J. Phys. Chem. Ref. Data 1998,27, No. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemirovskiy, O.V., Gross, M.L. Intrinsic Ca2+ affinities of peptides: Application of the kinetic method to analogs of calcium-binding site III of rabbit skeletal troponin C. J. Am. Soc. Spectrom. 11, 770–779 (2000). https://doi.org/10.1016/S1044-0305(00)00153-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00153-7

Keywords

Navigation