Skip to main content
Log in

Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Proteins of the S100- family such as MRP8 (S100A8) and MRP14 (S100A9)—and its isoform MRP14*—show two calcium-binding sites (EF hands) per protein chain. MRP8, MRP14*, and MRP14, isolated from human granulocytes or monocytes, are known to form noncovalently associated complexes; the exact stoichiometries of these complexes in the presence of calcium are still controversially discussed in the literature. The present electrospray ionization-mass spectrometry (ESI-MS) study shows that MRP8, MRP14*, and MRP14 exist as heterodimers MRP8/14* and MRP8/14, respectively, in the absence of calcium confirming both a recent nuclear magnetic resonance study and a biochemical study on this topic. Furthermore, this ESI-MS study confirms the previously published matrix-assisted laser desorption ionization (MALDI)-MS study, which states that the MRP8/14* and MRP8/14 heterodimeric complexes tetramerize to heterotetramers (MRP8/14*)2, (MRP8/14*)(MRP8/14), and (MRP8/14)2, respectively, in the presence of calcium. The number of Ca2+ ions bound to the individual tetramer is determined to be eight for nonphosphorylated fractions; this is in agreement with the previously reported MALDI study on these fractions. About 1.2 Ca2+ ions more are bound to the phosphorylated form; it is speculated that the additional Ca2+ ions are bound to the phosphate groups in the tetramers. This study is, therefore, convincing proof of the reliability of MALDI-MS in studying noncovalent protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, P.; Qi-Zhuang, Y.; Loo, J. A.Anal. Chem. 1994,66, 4190–4194.

    Article  CAS  Google Scholar 

  2. Peifeng, H.; Loo, J. A. J.J. Mass Spectrom. 1995,30, 1076–1082.

    Article  Google Scholar 

  3. Nemirovsky, O. V.; Ramanathan, R.; Gross, M. L.J. Am. Soc. Mass Spectrom. 1997,8, 809–812.

    Article  Google Scholar 

  4. Lafitte, D.; Capony, J. P.; Grassy, G.; Haiech, J.; Calas, B.J. Mass Spectrom. Rapid. Commun. Mass Spectrom. 1995, S192–S196.

  5. Lafitte, D.; Capony, J. P.; Grassy, G.; Haiech, J.; Calas, B.Biochemistry 1995,34, 13825–13832.

    Article  CAS  Google Scholar 

  6. Johnson, K. L.; Veenestra, T. D.; Tomlinson, A. J.; Kumar, R.; Naylor, S.Rapid. Commun. Mass Spectrom. 1997,11, 939–942.

    Article  CAS  Google Scholar 

  7. Donato, R.Biochim. Biophys. Acta 1999,1450, 191–231.

    Article  CAS  Google Scholar 

  8. Heizmann, C. W.; Cox, J. A.BioMetals 1998,11, 383–397.

    Article  CAS  Google Scholar 

  9. Kretsinger, R. H.Annu. Rev. Biochem. 1976,45, 239–266.

    Article  CAS  Google Scholar 

  10. Raftery, M.; Harrison, C. A.; Geczy, C. L.Rapid. Commun. Mass Spectrom. 1997,11, 405–409.

    Article  CAS  Google Scholar 

  11. Raftery, M.; Geczy, C. L.J. Am. Soc. Mass Spectrom. 1998,9, 533–539.

    Article  CAS  Google Scholar 

  12. Teigelkamp, S.; Bhardwaj, R. S.; Roth, J.; Meinardus, H. G.; Karas, M.; Sorg, C.J. Biol. Chem. 1991,266, 13462–13467.

    CAS  Google Scholar 

  13. Berntzen, H. B.; Fagerhol, M. K.Scand. J. Clin. Lab. Invest. 1988,48, 647–652.

    CAS  Google Scholar 

  14. Edgeworth, J.; Gorman, M.; Bennett, R.; Freemont, P.; Hogg, N.J. Biol. Chem. 1991,266, 7706–7713.

    CAS  Google Scholar 

  15. Hunter, M. J.; Chazin, W.J. Biol. Chem. 1998,273, 12427–12435.

    Article  CAS  Google Scholar 

  16. Vogl, T.; Roth, J.; Sorg, C.; Hillenkamp, F.; Strupat, K.J. Am. Soc. Mass Spectrom. 1999,10, 1124–1130.

    Article  CAS  Google Scholar 

  17. Rosinke, B.; Strupat, K.; Hillenkamp, F.; Rosenbusch, J.; Dencher, N.; Krüger, U.; Galla, H. J.J. Mass Spectrom. 1995,30, 1462–1468.

    Article  CAS  Google Scholar 

  18. Cohen, L.; Strupat, K.; Hillenkamp, F.J. Am. Soc. Mass Spectrom. 1997,8, 1046–1052.

    Article  CAS  Google Scholar 

  19. Moniatte, M.; Lesieur, C.; Vécey-Semjen, B.; Buckley, J. T.; Pattus, F.; van der Goot, F. G.; van Dorsselaer, A.Int. J. Mass Spectrom. Ion Proc. 1997,169/170, 179–199.

    Article  Google Scholar 

  20. Pröpper, C.; Huang, X.; Roth, J.; Sorg, C.; Nacken, W.J. Biol. Chem. 1999,274, 183–188.

    Article  Google Scholar 

  21. van den Bos, C.; Rammes, A.; Vogl, T.; Boyton, R.; Zaia, J.; Sorg, C.; Roth, J.Protein Expr. Purif. 1998,13, 313–318.

    Article  Google Scholar 

  22. Vogl, T.; Pröpper, C.; Hartmann, M.; Strey, A.; Strupat, K.; van den Bos, C.; Sorg, C.; Roth, J.J. Biol. Chem. 1999,274, 25291–25296.

    Article  CAS  Google Scholar 

  23. Rogniaux, H.; Van Dorsselaer, A.; Barth, P.; Bielmann, J. F.; Barbanton, J.; van Zandt, M.; Chevrier, B.; Howard, E.; Mitschler, A.; Potier, N.; Urzhumtseva, L.; Moras, D.; Podjarny, A.J. Am. Soc. Mass Spectrom. 1999,10, 635–647.

    Article  CAS  Google Scholar 

  24. van den Bos, C.; Roth, J.; Koch, H. G.; Hartmann, N.; Sorg, C.J. Immunol. 1996,156, 1247–1254.

    Google Scholar 

  25. Strupat, K.; Vogl, T., unpublished results: 6-ATT matrix was dissolved in 10 mM ammonium acetate (water as solvent) and prepared with MRP8/14 (10 μM) in the absence of calcium. Clearly, a “first shot phenomenon” was observed showing the two different dimers MRP8/14* and MRP8/14 as abundant signals in the UV-MALDI mass spectra.

  26. Kerkhoff, C.; Klempt, M.; Kaever, V.; Sorg, C.J. Biol. Chem. 1999,274, 32672–32679.

    Article  CAS  Google Scholar 

  27. Siegenthaler, G.; Roulin, K.; Chatellard-Gruaz, D.; Hotz, R.; Sourat, J. H.; Hellman, U.; Hagens, G.J. Biol. Chem. 1997,272, 9371–9377.

    Article  CAS  Google Scholar 

  28. Strupat, K.; Vogl, T.; unpublished results, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Strupat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strupat, K., Rogniaux, H., Van Dorsselaer, A. et al. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 are confirmed by electrospray ionization-mass analysis. J. Am. Soc. Spectrom. 11, 780–788 (2000). https://doi.org/10.1016/S1044-0305(00)00150-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00150-1

Keywords

Navigation