An activated carbon substrate surface for laser desorption mass spectrometry

  • Mei Han
  • Jan Sunner


A method to obtain laser desorption/ionization mass spectra of organic compounds by depositing sample solutions onto a carbon substrate surface is demonstrated. The substrate consists of a thin layer of activated carbon particles immobilized on an aluminum support. In common with the porous carbon suspension samples used in previous “surface-assisted laser desorption/ionization” (SALDI) work, the mass spectra contain only a few “matrix” background ion peaks, minimizing interference with analyte ion peaks. The presence of glycerol ensured that the ion signals were stable over hundreds of laser shots. In addition, the carbon substrate surface has several advantages over the suspension samples. The use of a very thin layer of carbon significantly improves the sensitivity. Detection limits range from attomoles for crystal violet to femtomoles for bradykinin. Very little sample preparation is required as the analyte solution is simply pipetted onto the substrate surface and glycerol added. When using an alternate sample deposition method, a mass resolution for bradykinin of 1800 is achieved in linear time-of-flight mode. This is close to the resolution limit set by the detector system and above instrument specification for matrix-assisted laser desorption/ionization mass spectra.


Activate Carbon MALDI Bradykinin Crystal Violet Mass Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Int. J. Mass Spectrom. Ion. Processes 1987, 78, 53–68.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  3. 3.
    Sunner, J.; Dratz, E.; Chen, Y. C. Anal. Chem. 1995, 67, 4335–4342.CrossRefGoogle Scholar
  4. 4.
    Tanaka, K.; Waki, H.; Idao, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  5. 5.
    Kraft, P.; Alimpiev, S.; Dratz, E.; Sunner, J. J. Am. Soc. Mass Spectrom. 1998, 9, 912–924.CrossRefGoogle Scholar
  6. 6.
    Hess, W. P.; Park, H. K.; Yavas, O.; Haglund, R. F. J. Appl. Surf. Sci. 1998, 127-129, 235–241.CrossRefGoogle Scholar
  7. 7.
    Westman, A.; Demirev, P.; Huthfehre, T.; Bielawski, J.; Sundqvist, B. U. R. Int. J. Mass Spectrom. Ion. Processes 1994, 130, 107–115.CrossRefGoogle Scholar
  8. 8.
    Sadeghi, M.; Vertes, A. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics; Orlando, FL, 1998; p 925.Google Scholar
  9. 9.
    Sadeghi, M.; Vertes, A. Appl. Surf. Sci. 1998, 127-129, 226–234.CrossRefGoogle Scholar
  10. 10.
    Strupat, K.; Karas, M.; Hillenkamp, F.; Eckerskorn, C.; Lottspeich, F. Anal. Chem. 1994, 66, 464–470.CrossRefGoogle Scholar
  11. 11.
    Zaluzec, E. J.; Gage, D. A.; Allison, J.; Watson, J. T. J. Am. Soc. Mass Spectrom. 1994, 5, 230–237.CrossRefGoogle Scholar
  12. 12.
    Mock, K. K.; Sutton, C. W.; Cottrell, J. S. Rapid Commun. Mass Spectrom. 1992, 6, 233–238.CrossRefGoogle Scholar
  13. 13.
    Blackledge, J. A.; Alexander, A. J. Anal. Chem. 1995, 67, 843–848.CrossRefGoogle Scholar
  14. 14.
    McComb, M. E.; Oleschuk, R. D.; Manley, D. M.; Donald, L.; Chow, A.; O’Neil, J. D. J.; Ens, W.; Standing, K. G.; Perreault, H. Rapid Commun. Mass Spectrom. 1997, 11, 1716–1722.CrossRefGoogle Scholar
  15. 15.
    Caldwell, K. L.; McGarity, D. R.; Murray, K. K. J. Mass Spectrom. 1997, 32, 1374–1377.CrossRefGoogle Scholar
  16. 16.
    Wei, J.; Buriak, J. M.; Siuzdak, G. Nature 1999, 399, 243–246.CrossRefGoogle Scholar
  17. 17.
    Chen, Y.-C. Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics; Portland, OR, 1996; p 642.Google Scholar
  18. 18.
    Chen, Y.-C. Thesis, Montana State University, 1997.Google Scholar
  19. 19.
    Chen, Y.-C.; Sunner, J., unpublished results.Google Scholar
  20. 20.
    Han, M. Thesis, Montana State University, June 1999.Google Scholar
  21. 21.
    Aldrich Technical Bulletin #5525, Aldrich, Milwaukee, WI, USA.Google Scholar
  22. 22.
    Barber, M.; Bordoli, R. S.; Sedgewick, R. D.; Tyler, A. N. J. Chem. Soc., Chem. Commun. 1981, 325.Google Scholar
  23. 23.
    Dobbs, R. A.; Cohen, J. M. Carbon Adsorption Isotherms for Toxic Organics; EPA: Washington, 1980.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2000

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA

Personalised recommendations