Skip to main content
Log in

Postsource decay fragmentation of N-linked carbohydrates from ovalbumin and related glycoproteins

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

N-linked glycans were released from chicken ovalbumin by hydrazinolysis and examined by matrix-assisted laser desorption/ionization mass spectrometry. Postsource decay analysis showed that most fragment ions arose as the result of internal glycosidic cleavages involving loss of nonreducing terminal residues from ions that had lost one or both GlcNAc residues from the chitobiose core [GlcNAcβ(1→ 4)GlcNAc]. Cross-ring fragments were abundant from the reducing-terminal GlcNAc but other cross-ring fragments were weak. The ion found to be most useful for determining the composition of the antennae attached to the 3- or 6-linked core mannose residues was an internal cleavage ion formed by loss of both the chitobiose core and the antenna linked to the 3-position of the core branching mannose. This ion was observed to lose water in the absence of a “bisecting” GlcNAc residue (β1 → 4 linked to the core mannose) and to lose a GlcNAc molecule (221 mass units) when a bisecting GlcNAc residue was present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stahl, B.; Steup, M.; Karas, M.; Hillenkamp, F. Analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1991, 63, 1463–1466.

    Article  CAS  Google Scholar 

  2. Harvey, D. J.; Rudd, P. M.; Bateman, R. H.; Bordoli, R. S.; Howes, K.; Hoyes, J. B.; Vickers, R. G. Examination of complex oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Org. Mass Spectrom. 1994, 29, 753–765.

    Article  CAS  Google Scholar 

  3. Spengler, B.; Kirsch, D.; Kaufmann, R.; Lemoine, J. Structure analysis of branched oligosaccharides using post-source decay in matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1995, 30, 782–787.

    Article  Google Scholar 

  4. Harvey, D. J.; Naven, T. J. P.; Küster, B.; Bateman, R. H.; Green, M. R.; Critchley, G. Comparison of fragmentation modes for the structural determination of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1556–1561.

    Article  CAS  Google Scholar 

  5. Patel, T.; Bruce, J.; Merry, A.; Bigge, C.; Wormald, M.; Jaques, A.; Parekh, R. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 1993, 32, 679–693.

    Article  CAS  Google Scholar 

  6. Harvey, D. J. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun. Mass Spectrom. 1993, 7, 614–619.

    Article  CAS  Google Scholar 

  7. Harvey, D. J.; Wing, D. R.; Küster, B.; Wilson, I. B. H. Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 2000, 11, 564–571.

    Article  CAS  Google Scholar 

  8. Yamashita, K.; Tachibana, Y.; Kobata, A. The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 1978, 253, 3862–3869.

    CAS  Google Scholar 

  9. Da Silva, M. L. C.; Stubbs, H. J.; Tamura, T.; Rice, K. G. 1H NMR characterization of a hen ovalbumin tyrosinamide N-linked oligosaccharide library. Arch. Biochem. Biophys. 1995, 318, 465–475.

    Article  Google Scholar 

  10. Piskarev, V. E.; Sepetov, N. F.; Likhosherstov, L. M.; Galenko, E. L.; Derevitskaia, V. A. Structure of carbohydrate chains of the riboflavin-binding glycoprotein of chicken egg protein. II. 1H-NMR (500 MHz) spectroscopy of the major neutral oligosaccharides. Bioorg. Khim. 1989, 15, 156–1554.

    Google Scholar 

  11. Yamashita, K.; Kamerling, J. P.; Kobata, A. Structural studies of the sugar chains of hen ovomucoid: Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains. J. Biol. Chem. 1983, 258, 3099–3106.

    CAS  Google Scholar 

  12. Yamashita, K.; Kamerling, J. P.; Kobata, A. Structural study of the carbohydrate moiety of hen ovomucoid: Occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains. J. Biol. Chem. 1982, 257, 12809–12814.

    CAS  Google Scholar 

  13. Paz-Parente, J.; Strecker, G.; Leroy, Y.; Montreuil, J.; Fournet, B.; van-Halbeek, H.; Dorland, L.; Vliegenthart, J. F. Primary structure of a novel N-glycosidic carbohydrate unit, derived from hen ovomucoid. A 500-MHz 1H-NMR study. FEBS Lett. 1983, 152, 145–152.

    Article  CAS  Google Scholar 

  14. Egge, H.; Peter-Katalinic, J.; Paz-Parente, J.; Strecker, G.; Montreuil, J.; Fournet, B. Carbohydrate structures of hen ovomucoid. A mass spectrometric analysis. FEBS Lett. 1983, 156, 357–362.

    Article  CAS  Google Scholar 

  15. Domon, B.; Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FABMS/MS spectra of glycoconjugates. Glycoconjugate J. 1988, 5, 397–409.

    Article  CAS  Google Scholar 

  16. Zal, F.; Küster, B.; Green, B. N.; Harvey, D. J.; Lallier, F. H. Partially glucose-capped oligosaccharides are found on the haemoglobins of the deep-sea tube worm Riftia pachyptila. Glycobiology 1998, 8, 663–673.

    Article  CAS  Google Scholar 

  17. Kovácik, V.; Hirsch, J.; Kovác, P.; Heerma, W.; Thomas-Oates, J.; Haverkamp, J. Oligosaccharide characterization using collision-induced dissociation fast atom bombardment mass spectrometry: Evidence for internal monosaccharide residue loss. J. Mass Spectrom. 1995, 30, 949–958.

    Article  Google Scholar 

  18. Brüll, L. P.; Heerma, W.; Thomas-Oates, J.; Haverkamp, J.; Kovácik, V.; Kovác, P. Loss of internal 1→ 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides. J. Am. Soc. Mass Spectrom. 1997, 8, 43–49.

    Article  Google Scholar 

  19. Brüll, L. P.; Kovácik, V.; Thomas-Oates, J. E.; Heerma, W.; Haverkamp, J. Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1520–1532.

    Article  Google Scholar 

  20. Harvey, D. J.; Bateman, R. H.; Green, M. R. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1997, 32, 167–187.

    Article  CAS  Google Scholar 

  21. Rouse, J. C.; Strang, A.-M.; Yu, W.; Vath, J. E. Isomeric differentiation of asparagine-linked oligosaccharides by matrix-assisted laser desorption-ionization postsource decay time-of-flight mass spectrometry. Anal. Biochem. 1998, 256, 33–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Harvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, D.J. Postsource decay fragmentation of N-linked carbohydrates from ovalbumin and related glycoproteins. J Am Soc Mass Spectrom 11, 572–577 (2000). https://doi.org/10.1016/S1044-0305(00)00121-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00121-5

Keywords

Navigation