Skip to main content
Log in

Determining synthetic failures in

  • Short Communication
  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

A combinatorial tripeptide library having the general form D-Glu-Xxx-Xxx-CONH2 has been synthesized using a standard mix and split synthetic protocol that is expected to produce 676 components. All components of the mixture were analyzed using a new high-resolution ion mobility/time-of-flight mass spectrometer coupled with an electrospray ionization source. In this approach ions are separated by differences in their gas-phase mobilities prior to being introduced into the mass spectrometer for mass-to-charge analysis. The peptide library includes a wide range of different sequence, structural, and stereo isomers; trends in the number of expected and resolved isomers that are observed at each m/z ratio allow specific synthetic steps that have failed to be identified, even in the presence of other isomers. Information about the relative abundances of different isomers should dramatically improve the reliability of binding affinity studies from direct analysis of mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Loo, J. A. Eur. Mass Spectrom. 1997, 3, 93–104.

    Article  CAS  Google Scholar 

  2. For discussions see: Chem. Eng. News 1996, February 12, p. 28; Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gordon, E. M. J. Med. Chem. 1994, 37, 1233–1251.

  3. Nawrocki, J. P.; Wigger, M.; Watson, C. H.; Hays, T. W.; Senko, M. W.; Benner, S. A.; Eyler, J. R. Rapid. Commun. Mass Spectrom. 1996, 10, 1860–1864.

    Article  CAS  Google Scholar 

  4. Dunyevskiy, Y. M.; Vouros, P.; Wintner, E. A.; Shipps, G. W.; Carell, T.; Rebek, J. Jr. Proc. Natl. Acad. Sci. USA 1996, 93, 6152–6157.

    Article  Google Scholar 

  5. Pomerantz, S. C.; McCloskey, J. A.; Tarasow, T. M.; Eaton, B. E. J. Am. Chem. Soc. 1997, 119, 3861–3867.

    Article  CAS  Google Scholar 

  6. Ion mobility techniques are discussed in: Hagen, D. F. Anal Chem. 1979, 51, 870–874; Hill, H. H.; Siems, W. F.; St. Louis, R. H.; McMinn, D. G. Anal. Chem. 1990, 62, 1201A-1209A; von Helden, G.; Hsu, M.-T.; Kemper, P. R.; Bowers, M. T. J. Chem. Phys. 1991, 95, 3835–3837; Clemmer, D. E.; Jarrold, M. F. J. Mass Spectrom. 1997, 32, 577–592.

    Article  CAS  Google Scholar 

  7. For discussions of binding affinities for mixtures see: Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski, W. M.; Knapp, R. J. Nature 1991, 354, 82–84; Salmon, S. E.; Lam, K. S.; Lebl, M.; Kandola, A.; Khattri, P. S.; Wade, S.; Patek, M.; Kocis, P.; Krchnak, V.; Thrope, D.; Felder, S. Proc. Natl. Acad. Sci. USA 1993, 90, 11708–11712; Jayawickreme, C. K.; Graminski, G. E.; Quillan, J. M.; Lerner, M. R. Proc. Natl. Acad. Sci. USA 1994, 91, 1614–1618.

    Article  CAS  Google Scholar 

  8. Mix and split strategies have been described previously. See, for example: Lebl, M.; Krchnak, V. Methods Enzymol. 1997, 289, 336–392. Briefly, the approach uses a gas (N2) agitated manifold system and standard Fmoc chemistry protocols [Wellings, D. A.; Atherton, E. Methods Enzymol. 1997, 289, 44–67]. Appropriately protected library inputs (and abbreviations for less common synthetic residues) are isoleucine, tyrosine, tryptophan, serine, histidine, proline, aspartic acid, arginine, lysine, glutamine, D-asparagine, D-glutamic acid, D-alanine, D-phenylalanine, D-lysine, hydroxyproline, 3-Aminopropionic acid or β-alanine (abbreviated as β-Ala), aspartic (O-benzyl) acid, glutamic (O-benzyl) acid, benzyl histidine, β-(l-napthyl)-alanine (abbreviated as N-Ala), β-(3-pyridyl)-alanine (abbreviated as 3-Ala), p-nitrophenylalanine, β-cyclohexylalanine (abbreviated as Chex), γ-aminobutyric acid, and tetrahydroisoquinoline-3-carboxylic acid (abbreviated as TIC). Synthesis was identical to that described in [9].

    Article  CAS  Google Scholar 

  9. Srebalus, C. A.; Li, J.; Marshall, W. S.; Clemmer, D. E. Anal. Chem. 1999, 71, 3918–3927.

    Article  CAS  Google Scholar 

  10. Stephenson, J. L.; McLuckey, S. A. J. Am. Soc. Mass Spectrom. 1998, 9, 585–596.

    Article  CAS  Google Scholar 

  11. Hoaglund, C. S.; Valentine, S. J.; Sporleder, C. R.; Reilly, J. P.; Clemmer, D. E. Anal. Chem. 1998, 70, 2236–2242; Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Anal. Chem. 1999, 71, 291–301.

    Article  CAS  Google Scholar 

  12. The value of 300 unique molecular weights comes from considering that of the 26 variable residues 24 have unique masses. Thus, there will be (24 + 2 − 1)!/2!(24 − 1)! = 300 unique peptide masses. For a discussion of combinatorial statistics see: Demirev, P. A.; Zubarev, R. A. Anal. Chem. 1997, 69, 2893–2900.

    Article  CAS  Google Scholar 

  13. TIC peptides could be absent because they are preferentially formed as doubly protonated ions; examination of the mass spectrum indicates that this is not the case.

  14. Ion conformers were generated using the Insight II software; BIOSYM/MSI: San Diego, CA, 1995. A multistage simulated annealing procedure was used. See: Counterman, A. E.; Clemmer, D. E. J. Am. Chem. Soc. 1999, 121, 4031–4039.

  15. von Helden, G.; Hsu, M.-T.; Gotts, N.; Bowers, M. T. J. Phys. Chem. 1993, 97, 8182–8192; Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Phys. Chem. 1996, 100, 16082–16086; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Chem. Phys. 1998, 108, 2416–2423.

    Article  Google Scholar 

  16. Details of peptide synthesis can be found in: Bodanszky, M. Principles of Peptide Synthesis, 2nd ed., Springer: Berlin, 1993; Bodanszky, M. Peptide Chemistry, A Practical Textbook, 2nd ed.; Springer: Berlin, 1993.

    Google Scholar 

  17. Samuelson, S. O.; Martyna, G. J. J. Phys. Chem. 1998, 109, 11061–11073; Hoaglund-Hyzer, C. S.; Counterman, A. E.; Clemmer, D. E. Chem. Rev. 1999, 99, 3037–3080.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clemmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srebalus, C.A., Li, J., Marshall, W.S. et al. Determining synthetic failures in. J Am Soc Mass Spectrom 11, 352–355 (2000). https://doi.org/10.1016/S1044-0305(00)00099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00099-4

Keywords

Navigation