Skip to main content
Log in

Gas-phase stability of double-stranded oligodeoxynucleotides and their noncovalent complexes with DNA-binding drugs as revealed by collisional activation in an ion trap

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

The intrinsic (gas-phase) stabilities of duplex, self-complementary oligonucleotides were measured in a relative way by subjecting the duplex precursor ions to increasing amounts of collision energy during the collisional-activated decomposition (CAD) events in an ion-trap mass spectrometer. The results are displayed as a dissociation profile, an s-shaped curve that shows the dependence of the relative abundance of the duplex on the applied collision energy. The total number of charges, the total number of base pairs, and the location of the high proton-affinity bases (i.e., G and C) are the main factors that affect the intrinsic stability of the duplex oligonucleotides. If the charge state is the same, the stability, as measured as a half-wave collision energy, E 1/2, correlates well with the total number of H bonds for the duplex. The intrinsic stabilities of noncovalent complexes between duplex oligonucleotide and some DNA-binding drugs were also measured by using the newly developed method. Although duplexes are stabilized in the gas phase when they bind to drug molecules, correlations between gas-phase stabilities and the solution-binding affinities have not yet been obtained. Complexes in which the drug is bound in the minor groove must be joined tightly because they tend to dissociate in the gas phase by breaking covalent bonds of the oligonucleotide to give base loss and small sequence-ion formation. Complexes in which the drug is known to favor intercalation dissociate by breaking weak, noncovalent bonds to form single-stranded oligonucleotides although cleavage of covalent bonds of the oligonucleotide also occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, R. D.; Bruce, J. E.; Wu, Q.; Lei, Q. P. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chem. Soc. Rev. 1997, 26, 191–202.

    Article  CAS  Google Scholar 

  2. Smith, R. D.; Light-Wahl, K. J.; Winger, B. E.; Loo, J. A. Preservation of non-covalent associations in electrospray ionization mass spectrometry: multiple charged polypeptide and protein dimers. Org. Mass Spectrom. 1992, 27, 811–821.

    Article  CAS  Google Scholar 

  3. Smith, R. D.; Light-Wahl, K. J. The observation of non-covalent interactions in solution by electrospray ionization mass spectrometry: promise, pitfalls and prognosis. Biol. Mass Spectrom. 1993, 22, 493–501.

    Article  CAS  Google Scholar 

  4. Gaskell, S. J. Electrospray: Principles and practice. J. Mass Spectrom. 1997, 32, 677–688.

    Article  CAS  Google Scholar 

  5. Witte, S.; Neumann, F.; Krawinkel, U.; Przybylski, M. Mass spectrometric identification of leucine zipper-like homodimer complexes of the autoantigen L7. J. Biol. Chem. 1996, 271, 18171–18175.

    Article  CAS  Google Scholar 

  6. Wendt, H.; Duerr, E.; Thomas, R. M.; Przybylski, M.; Bosshard, H. R. Characterization of leucine zipper complexes by electrospray ionization mass spectrometry. Protein Sci. 1995, 4, 1563–1570.

    Article  CAS  Google Scholar 

  7. Ganem, B.; Li, Y. T.; Henion, J. D. Detection of noncovalent receptor-ligand complexes by mass spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296.

    Article  CAS  Google Scholar 

  8. Baca, M.; Kent, S. B. H. Direct observation of a ternary complex between the dimeric enzyme HIV-1 protease and a substrate-based inhibitor. J. Am. Chem. Soc. 1992, 114, 3992–3993.

    Article  CAS  Google Scholar 

  9. Ding, J.; Anderegg, R. J. Specific and nonspecific dimer formation in the electrospray ionization mass spectrometry of oligonucleotides. J. Am. Soc. Mass Spectrom. 1995, 6, 159–164.

    Article  CAS  Google Scholar 

  10. Light-Wahl, K. J.; Springer, D. L.; Winger, B. E.; Edmonds, C. G.; Camp, D. G. II; Thrall, B. D.; Smith, R. D. Observation of a small oligonucleotides duplex by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 1993, 115, 803–804.

    Article  CAS  Google Scholar 

  11. Ganem, B.; Li, Y. T.; Henion, J. D. Detection of oligonucleotides duplex forms by ion-spray mass spectrometry. Tetrahedron Lett. 1993, 34, 1445–1448.

    Article  CAS  Google Scholar 

  12. Bayer, E.; Bauer, T.; Schmeer, K.; Bleicher, K.; Maier, M.; Gaus, H.-J. Analysis of double-stranded oligonucleotides by electrospray mass spectrometry. Anal. Chem. 1994, 66, 3858–3863.

    Article  CAS  Google Scholar 

  13. Goodlett, D. R.; Camp, D. G. II; Hardin, C. C.; Corregan, M.; Smith, R. D. Direct observation of a DNA quadruplex by electrospray ionization mass spectrometry. Biol. Mass Spectrom. 1993, 22, 181–183.

    Article  CAS  Google Scholar 

  14. Hsieh, Y. L.; Li, Y. T.; Henion, J. D.; Ganem, B. Studies of non-covalent interactions of actinomycin D with single-stranded oligodeoxynucleotides by ion spray mass spectrometry and tandem mass spectrometry. Biol. Mass Spectrom. 1994, 23, 272–276.

    Article  CAS  Google Scholar 

  15. Gale, D. C.; Goodlett, D. R.; Light-Wahl, K. J.; Smith, R. D. Observation of duplex DNA-drug noncovalent complexes by electrospray ionization mass spectrometry. J. Am. Chem. Soc. 1994, 116, 6027–6028.

    Article  CAS  Google Scholar 

  16. Gale, D. C.; Smith, R. D. Characterization of noncovalent complexes formed between minor groove binding molecules and duplex DNA by electrospray ionization-mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1154–1164.

    Article  CAS  Google Scholar 

  17. Gao, Q.; Cheng, X.; Smith, R. D.; Yang, C. F.; Goldberg, I. H. Binding specificity of postactivated neocarzinostatin chromophore drug-bulged DNA complex studied using electrospray ionization mass spectrometry. J. Mass Spectrom. 1996, 31, 31–36.

    Article  CAS  Google Scholar 

  18. Loo, J. A.; Sannes-Lowery, K. A.; Hu, P.; Mack, D. P.; Mei, H.-Y. Studying noncovalent protein-RNA interactions and drug binding by electrospray ionization mass spectrometry. NATO ASI Ser., Ser. C 1998, 510, 83–99.

    CAS  Google Scholar 

  19. Schnier, P. D.; Klassen, J. S.; Strittmatter, E. F.; Williams, E. R. Activation energies for dissociation of double strand oligonucleotide anions: Evidence for Watson-Crick base pairing in vacuo. J. Am. Chem. Soc. 1998, 120, 9605–9613.

    Article  CAS  Google Scholar 

  20. Armentrout, P. B. Guided-ion beam studies of ionic transition metal clusters and complexes. NATO ASI Ser., Ser. C 1996, 474, 23–48.

    CAS  Google Scholar 

  21. Armentrout, P. B. Thermochemical measurements by guided ion beam mass spectrometry. Adv. Gas Phase Ion Chem. 1992, 1, 83–119.

    CAS  Google Scholar 

  22. Armentrout, P. B.; Clemmer, D. E. Guided ion beam studies of the energetics of organometallic species. NATO ASI Ser., Ser. C 1992, 367, 321–356.

    CAS  Google Scholar 

  23. Wan, K. X.; Shibue, T.; Gross, M. L. Non-covalent complexes between DNA-binding drugs and double-stranded oligonucleotides: A study by ESI-ion trap mass spectrometry. J. Am. Chem. Soc. 2000, 122, 300–307.

    Article  CAS  Google Scholar 

  24. Penn, S. G.; He, F.; Lebrilla, C. B. Peptides complexed to cyclodextrin fragment rather than dissociate when subjected to blackbody infrared radiation. J. Phys. Chem. B 1998, 102, 9119–9126.

    Article  CAS  Google Scholar 

  25. Nordhoff, E.; Kirpekar, F.; Roepstorff, P. Mass spectrometry of nucleic acids. Mass Spectrom. Rev. 1997, 15, 69–138.

    Google Scholar 

  26. Pushcendorf, B.; Petersen, E.; Wolf, H.; Werchau, H.; Grunicke, H. Effect of distamycin on the DNA dependent RNA polymerase system. Biochem. Biophys. Res. Commun. 1971, 43, 617–624.

    Article  Google Scholar 

  27. Zimmer, C.; Waehnert, U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol. 1986, 47, 31–112.

    Article  CAS  Google Scholar 

  28. Mauger, A. B. The actinomycins. Top. Antibiot. Chem. 1980, 5, 223–306.

    CAS  Google Scholar 

  29. Sobell, H. M. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 1985, 82, 5328–5331.

    Article  CAS  Google Scholar 

  30. Lavery, R.; Pullman, B. The dependence of the surface electrostatic potential of B-DNA on environmental factors. J. Biomol. Struct. Dyn. 1985, 2, 1021–1032.

    CAS  Google Scholar 

  31. Geierstanger, B. H.; Wemmer, D. E. Complexes of the minor grove of DNA. Annu. Rev. Biophys. Biomol. Struct. 1995, 24, 463–493.

    Article  CAS  Google Scholar 

  32. Fiel, R. J.; Howard, J. C.; Mark, E. H.; Gupta, N. D. Interaction of DNA with a porphyrin ligand: evidence for intercalation. Nucleic Acids Res. 1979, 6, 3093–3118.

    Article  CAS  Google Scholar 

  33. Pasternack, R. F.; Garrity, P.; Ehrlich, B.; Davis, C. B.; Gibbs, E. J.; Orloff, G.; Giartosio, A.; Turano, C. The influence of ionic strength on the binding of a water soluble porphyrin to nucleic acids. Nucleic Acids Res. 1986, 14, 5919–5931.

    Article  CAS  Google Scholar 

  34. Sari, M. A.; Battioni, J. P.; Dupre, D.; Mansuy, D.; Le Pecq, J. B. Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry 1990, 29, 4205–4215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, K.X., Gross, M.L. & Shibue, T. Gas-phase stability of double-stranded oligodeoxynucleotides and their noncovalent complexes with DNA-binding drugs as revealed by collisional activation in an ion trap. J Am Soc Mass Spectrom 11, 450–457 (2000). https://doi.org/10.1016/S1044-0305(00)00095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00095-7

Keywords

Navigation