Skip to main content
Log in

Mass resolution of 11,000 to 22,000 with a multiple pass quadrupole mass analyzer

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

CO+ and N +2 are separated with resolution of 11,000 [full width half maximum (FWHM)] using a conventional quadrupole mass spectrometer by applying square wave voltages to the entrance and exit lenses to trap or reflect the ions for multiple passes. A resolution of 22,000 (FWHM) with 63% of the total signal remaining is attained using multiple passes when ions are stored between injection pulses. Gated ion extraction also reduces the mass shift and number and intensity of artifact peaks and permits better resolution compared to the performance obtained when the ions are injected continuously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White, F. A.; Wood, G. M. Mass Spectrometry: Applications in Science and Engineering; Wiley-Interscience: New York, 1986.

    Google Scholar 

  2. Watson, J. T. Introduction to Mass Spectrometry; Raven: New York, 1985.

    Google Scholar 

  3. Duckworth, H. E.; Barber, R. C.; Venkatasubramanian, V. S. Mass Spectroscopy, 2nd ed.; Cambridge University Press: Cambridge, UK, 1986.

    Google Scholar 

  4. Ross, M. E.; Johnstone, A. W. Mass Spectrometry for Chemists and Biochemists; Cambridge University Press: New York, 1982.

    Google Scholar 

  5. Eadon, G. A. Treatise on Analytical Chemistry, 2nd ed.; Wiley-Interscience: New York, 1980.

    Google Scholar 

  6. Houk, R. S.; Fassel, V. A.; Flesch, G. D.; Svec, H. J.; Gray, A. L.; Taylor, C. E. Anal. Chem. 1980, 52, 2283–2289.

    Article  CAS  Google Scholar 

  7. Dawson, P. H. Quadrupole Mass Spectrometry and Its Applications; Elsevier: Amsterdam, 1976.

    Google Scholar 

  8. Du, Z.; Douglas, D. J.; Konenkov, N. V. J. Anal. Atom. Spectrom. 1999, 14, 1111–1120.

    Article  CAS  Google Scholar 

  9. Dawson, P. H.; Bingi, Y. Int. J. Mass Spectrom. Ion Processes 1984, 56, 25–39.

    Article  CAS  Google Scholar 

  10. Ying, J. F.; Douglas, D. J. Rapid Commun. Mass Spectrom. 1996, 10, 649–652.

    Article  CAS  Google Scholar 

  11. Konenkov, N. V.; Mogilchenko, S. A.; Silakov, S. S.; Shagimuratov, G. I. Soviet J. Tech. Phys. 1990, 60, 148.

    Google Scholar 

  12. Konenkov, N. V.; Kratenkov, V. I. Int. J. Mass Spectrom. Ion Processes 1991, 108, 115–136.

    Article  CAS  Google Scholar 

  13. Dawson, P. H. J. Vac. Sci. Technol. 1974, 11, 1151–1153.

    Article  Google Scholar 

  14. de Maack, F.; Devant, G.; Lapetit, G.; Rolando, C. 36th ASMS Conference on Mass Spectrometry and Allied Topics; San Francisco, CA, 1988; Paper No. 817.

  15. Miteki, K. U.S. Patent 5,227,629, July 1993.

  16. Beaugrand, C., personal communication 1998.

  17. Titov, V. V. J. Am. Soc. Mass Spectrom. 1998, 9, 50–69, 70–87.

    Article  CAS  Google Scholar 

  18. von Zahn, U. Z. Phys. 1962, 168, 129–142.

    Article  CAS  Google Scholar 

  19. Batey, J. Durham Conference on Plasma Mass Spectrometry; Durham, UK, September 1994.

  20. Willmaaek, K. Vacuum 1982, 65, 326.

    Google Scholar 

  21. Amad, M. H.; Houk, R. S. Anal. Chem. 1998, 70, 4885–4889.

    Article  CAS  Google Scholar 

  22. Kaiser, R. E., Jr.; Cooks, R. G.; Stafford, G. C., Jr.; Syka, S. E. P.; Hemberger, P. H. Int. J. Mass Spectrom. Ion Processes 1991, 106, 79–115; Williams, J. D.; Cox, K. A.; Cooks, R. G.; Kaiser, R. E., Jr.; Schwartz, J. C. Rapid Comm. Mass Spectrom. 1991, 5, 327–329.

    Article  CAS  Google Scholar 

  23. Dolnikowski, G. G.; Kristo, M. J.; Enke, C. G.; Watson, J. T. Int. J. Mass Spectrom. Ion Processes 1988, 82, 1–15.

    Article  CAS  Google Scholar 

  24. Campbell, J. M.; Collings, B. A.; Douglas, D. J. Rapid Commun. Mass Spectrom. 1998, 12, 1463–1474.

    Article  CAS  Google Scholar 

  25. Huang, Y.; Li, G.-Z.; Guan, S.; Marshall, A. G. J. Am. Soc. Mass Spectrom. 1997, 8, 962–969.

    Article  CAS  Google Scholar 

  26. Hanson, C. Anal. Chem. 2000, 72, 448–453; U.S. Patent 6,013,913.

    Article  CAS  Google Scholar 

  27. Piyadasa, C. K. G.; Hakansson, P.; Ariyaratne, T. R. Rapid Commun. Mass Spectrom. 1999, 13, 620–624.

    Article  CAS  Google Scholar 

  28. Grix, R.; Gruner, U.; Li, G.; Strolt, H.; Wollnik, H. Int. J. Mass Spectrom. Ion Processes 1989, 93, 323–330.

    Article  CAS  Google Scholar 

  29. Cox, K. A.; Cleven, C. D.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1995, 144, 47–65.

    Article  CAS  Google Scholar 

  30. Kocher, K.; Favre, A.; Gonnet, F.; Tabet, J. C. J. Mass Spectrom. 1998, 33, 921–935.

    Article  CAS  Google Scholar 

  31. Mo, W.; Langford, M. L.; Todd, J. F. J. Rapid Commun. Mass Spectrom. 1995, 9, 107–113.

    Article  CAS  Google Scholar 

  32. Lammert, S. A.; Wells, J. M. Rapid Commun. Mass Spectrom. 1996, 10, 361–371.

    Article  CAS  Google Scholar 

  33. Beaugrand, C.; Poisson, L.; Rolando, C.; Sablier, M. 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, 1995; Paper No. 1072.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Houk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amad, M.H., Houk, R.S. Mass resolution of 11,000 to 22,000 with a multiple pass quadrupole mass analyzer. J Am Soc Mass Spectrom 11, 407–415 (2000). https://doi.org/10.1016/S1044-0305(00)00094-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00094-5

Keywords

Navigation