Advertisement

“Dueling” ESI: Instrumentation to study ion/ion reactions of electrospray-generated cations and anions

  • J. Mitchell Wells
  • Paul A. Chrisman
  • Scott A. McLuckey
Focus: Quadrupole Ion Traps

Abstract

Novel instrumentation has been developed which allows for the sequential injection and subsequent reaction of oppositely-charged ions generated via electrospray ionization (ESI) in a quadrupole ion trap mass spectrometer. The instrument uses a DC turning quadrupole to sequentially direct the two ion polarities into the ion trap from ESI sources which are situated 90° from the axial (z) dimension of the trap, and 180° from one another. This arrangement significantly expands the range of ionic reactants amenable to study over previously-used instrumentation. For example, ion/ion reactions of multiply-charged positive ions with multiply-charged negative ions can be studied. Also, reactions of multiply-charged ions with singly-charged ions of opposite polarity that could not be generated by previously used ionization methods, or that could not be efficiently injected through the ion trap ring electrode, can be studied with the new instrument. This capability allows, for example, the charge state manipulation of negatively-charged precursor and product ions derived from proteins and oligonucleotides via proton transfer reactions with singly-charged cations generated by ESI.

Keywords

Proton Transfer Ring Electrode Benzene Sulfonic Acid Collisional Cool Corona Discharge Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Busch, K. L.; McLuckey, S. A.; Glish, G. K., Eds. Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry. VCH Publishers, Inc.: New York, 1988.Google Scholar
  2. 2.
    Aebersold, R.; Goodlet, D. R.. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–296.CrossRefGoogle Scholar
  3. 3.
    Yates, J. R. Mass Spectrometry and the Age of the Proteome. J. Mass. Spectrom. 1998, 33, 1–19.CrossRefGoogle Scholar
  4. 4.
    Ervin, K. M. Experimental Techniques in Gas-Phase Ion Thermochemistry. Chem. Rev. 2001, 101, 391–444.CrossRefGoogle Scholar
  5. 5.
    Gronert, S. Mass Spectrometric Studies of Organic Ion/molecule Reactions. Chem. Rev. 2001, 101, 329–360.CrossRefGoogle Scholar
  6. 6.
    McMahon, T. B. Thermochemical Ladders: Scaling the Ramparts of Gaseous Ion Energetics. Int. J. Mass Spectrom. 2000, 200, 187–199.CrossRefGoogle Scholar
  7. 7.
    Kebarle, P. Gas-Phase Ion Thermochemistry Based on Ion-Equilibria: From the Ionosphere to the Reactive Centers of Enzymes. Int. J. Mass Spectrom. 2000, 200, 313–330.CrossRefGoogle Scholar
  8. 8.
    Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas-Phase Proteins via H/D Isotopic Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.CrossRefGoogle Scholar
  9. 9.
    Valentine, S. J.; Clemmer, D. E. H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 3558–3566.CrossRefGoogle Scholar
  10. 10.
    Wood, T. D.; Chorush, R. A.; Wampler, F. M. I.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Gas-Phase Folding and Unfolding of Cytochrome c Cations. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 2451–2454.CrossRefGoogle Scholar
  11. 11.
    Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas-Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840–12854.CrossRefGoogle Scholar
  12. 12.
    Stephenson, J. L.; Schaaff, T. G.; McLuckey, S. A. Hydroiodic Acid Attachment Kinetics as a Chemical Probe of Gaseous Protein Ion Structure: Bovine Pancreatic Trypsin Inhibitor. J. Am. Soc. Mass Spectrom. 1999, 10, 552–556.CrossRefGoogle Scholar
  13. 13.
    Schaaff, T. G.; Stephenson, J. L.; McLuckey, S. A. The Reactivity of Gaseous Ions of Bradykinin and Its Analogues with Hydro- and Deuteroiodic Acid. J. Am. Chem. Soc. 1999, 121, 8907–8919.CrossRefGoogle Scholar
  14. 14.
    Stephenson, J. L.; McLuckey, S. A. Gaseous Protein Cations are Amphoteric. J. Am. Chem. Soc. 1997, 119, 1688–1696.CrossRefGoogle Scholar
  15. 15.
    McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. Reactions of Dimethylamine with Multiply Charged Ions of Cytochrome c. J. Am. Chem. Soc. 1990, 112, 5668–5670.CrossRefGoogle Scholar
  16. 16.
    Cassady, C. J.; Wronka, J.; Kruppa, G. H.; Laukien, F. H. Deprotonation Reactions of Multiply Protonated Ubiquitin Ions. Rapid Commun. Mass Spectrom. 1994, 8, 394–400.CrossRefGoogle Scholar
  17. 17.
    Green, M. K.; Lebrilla, C. B. Ion-Molecule Reactions as Probes of Gas-Phase Structures of Peptides and Proteins. Mass Spectrom. Rev. 1997, 16, 53–71.CrossRefGoogle Scholar
  18. 18.
    Williams, E. R. Proton Transfer Reactivity of Large Multiply Charged Ions. J. Mass Spectrom. 1996, 31, 831–842.CrossRefGoogle Scholar
  19. 19.
    Ogorzalek-Loo, R. R.; Winger, B. E.; Smith, R. D. Proton-Transfer Reaction Studies of Multiply-Charged Proteins in a High Mass-to-Charge Ratio Quadrupole Mass-Spectrometer. J. Am. Soc. Mass Spectrom. 1994, 5, 1064–1071.CrossRefGoogle Scholar
  20. 20.
    Ogorzalek-Loo, R. R.; Smith, R. D. Proton-Transfer Reactions of Multiply-Charged Peptide and Protein Cations and Anions. J. Mass Spectrom. 1995, 30, 339–347.CrossRefGoogle Scholar
  21. 21.
    O’Hair, R. A. J.; McLuckey, S. A. Trimethylsilyl Derivatization of Nucleic Acid Anions in the Gas-Phase. Int. J. Mass Spectrom. Ion Process. 1997, 162, 183–202.CrossRefGoogle Scholar
  22. 22.
    Stephenson, J. L.; McLuckey, S. A. Ion/Ion Reactions for Oligopeptide Mixture Analysis: Application to Mixtures Comprised of 0.5–100 kDa Components. J. Am. Soc. Mass Spectrom. 1998, 9, 585–596.CrossRefGoogle Scholar
  23. 23.
    Scalf, M.; Westphall, M. S.; Krause, J.; Kaufman, S. L.; Smith, L. M. Controlling Charge States of Large Ions. Science 1999, 283, 194–197.CrossRefGoogle Scholar
  24. 24.
    Wells, J. M.; Reid, G. E.; Engel, B. J.; Pan, P.; McLuckey, S. A. Dissociation Reactions of Gaseous Ferro-, Ferri-, and Apo-Cytochrome c Ions. J. Am. Soc. Mass Spectrom. 2001, 873, 873–876.CrossRefGoogle Scholar
  25. 25.
    Reid, G. E.; Wu, J.; Chrisman, P. A.; Wells, J. M.; McLuckey, S. A. Charge-State-Dependent Sequence Analysis of Protonated Ubiquitin Ions via Ion Trap Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 3274–3281.CrossRefGoogle Scholar
  26. 26.
    Cargile, B. J.; McLuckey, S. A.; Stephenson, J. L. Identification of Bacteriophage MS2 Coat Protein from E-coli Lysates via Ion Trap Collisional Activation of Intact Protein Ions. Anal. Chem. 2001, 73, 1277–1285.CrossRefGoogle Scholar
  27. 27.
    Reid, G. E.; Stephenson, J. L.; McLuckey, S. A. Tandem Mass Spectrometry of Ribonuclease A and B: N-linked Glycosylation Site Analysis of Whole Protein Ions. J. Mass Spectrom. 2001, in press.Google Scholar
  28. 28.
    Ogorzalek-Loo, R. R.; Udseth, H. R.; Smith, R. D. Evidence for Charge Inversion in the Reactions of Singly Charged Anions with Multiply Charged Macroions. J. Phys. Chem. 1991, 95, 6412–6415.CrossRefGoogle Scholar
  29. 29.
    Ogorzalek-Loo, R. R.; Udseth, H. R.; Smith, R. D. A New Approach for the Study of Gas-Phase Ion. J. Am. Soc. Mass Spectrom. 1992, 3, 695–705.CrossRefGoogle Scholar
  30. 30.
    Scalf, M.; Westphall, M. S.; Smith, L. M. Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72, 52–60.CrossRefGoogle Scholar
  31. 31.
    Ebeling, D. D.; Westphall, M. S.; Scalf, M.; Smith, L. M. Corona Discharge in Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72, 5158–5161.CrossRefGoogle Scholar
  32. 32.
    McLuckey, S. A.; Stephenson, J. L. Ion/Ion Chemistry of High-Mass Multiply Charged Ions. Mass Spec. Rev. 1998, 17, 369–407.CrossRefGoogle Scholar
  33. 33.
    McLuckey, S. A.; Glish, G. L.; Asano, K. G.; Grant, B. C. Atmospheric Sampling Glow-Discharge Ionization Source for the Determination of Trace Organic Compounds in Ambient Air. Anal. Chem. 1988, 60, 2220–2227.CrossRefGoogle Scholar
  34. 34.
    Stephenson, J. L.; McLuckey, S. A. Adaptation of the Paul Trap for Study of the Reactions of Multiply-Charged Cations with Singly-Charged Anions. Int. J. Mass Spectrom. Ion Processes. 1997, 162, 89–106.CrossRefGoogle Scholar
  35. 35.
    Stephenson, J. L.; Van Berkel, G. J.; McLuckey, S. A.. Ion. J. Am. Soc. Mass Spectrom. 1997, 8, 637–644.CrossRefGoogle Scholar
  36. 36.
    Louris, J. N.; Brodbelt-Lustig, J. S.; Cooks, R. G.; Glish, G. L.; Van Berkel, G. J.; McLuckey, S. A. Ion Isolation and Sequential Stages of Mass Spectrometry in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. Ion Processes. 1990, 96, 117.CrossRefGoogle Scholar
  37. 37.
    Kaiser, R. E.; Cooks, R. G.; Stafford, G. C.; Syka, J. E. P.; Hemberger, P. H. Operation of a Quadrupole Ion Trap Mass Spectrometer to Achieve High Mass/Charge Ratios. Int. J. Mass Spectrom. Ion Processes. 1991, 106, 79–115.CrossRefGoogle Scholar
  38. 38.
    SIMION 3D, Version 7.0, Idaho National Engineering and Environmental Laboratory; Idaho Falls, ID.Google Scholar
  39. 39.
    ICMS Ion Trap Software, Version 2.20, University of Florida; Gainsville, FL.Google Scholar
  40. 40.
    Zhang, X.; Cassady, C. J. Apparent Gas-Phase Acidities of Multiply Protonated Peptide Ions: Ubiquitin, Insulin B, and Renin Substrate. J. Am. Soc. Mass Spectrom. 1996, 7, 1211–1218.CrossRefGoogle Scholar
  41. 41.
    http://webbook.nist.gov.Google Scholar
  42. 42.
    Goeringer, D. E.; McLuckey, S. A. Relaxation of Internally Excited High-Mass Ions Simulated Under Typical Quadrupole Ion Trap Storage Conditions. Int. J. Mass Spectrom. 1998, 177, 163–174.CrossRefGoogle Scholar
  43. 43.
    Herron, W. J.; Goeringer, D. E.; McLuckey, S. A. Gas-Phase Electron-Transfer Reactions from Multiply-Charged Anions to Rare-Gas Cations. J. Am. Chem. Soc. 1995, 117, 11555–11562.CrossRefGoogle Scholar
  44. 44.
    Herron, W. J.; Goeringer, D. E.; McLuckey, S. A. Ion-Ion Reactions in the Gas-Phase: Proton-Transfer Reactions of Protonated Pyridine with Multiply Charged Oligonucleotide Anions. J. Am. Soc. Mass Spectrom. 1995, 6, 529–532.CrossRefGoogle Scholar
  45. 45.
    McLuckey, S. A.; Wu, J.; Bundy, J. L.; Stephenson, J. L.; Hurst, G. B. Oligonucleotide Mixture Analysis via Electrospray and Ion/Ion Reactions in a Quadrupole Ion Trap. Anal. Chem.; 2002, in press.Google Scholar
  46. 46.
    McLuckey, S. A.; Reid, G. E.; Wells, J. M. Ion Parking During Ion/ion Reactions in Electrodynamic Ion Traps. Anal. Chem. 2002, in press.Google Scholar
  47. 47.
    Wells, J. M.; Chrisman, P. A.; McLuckey, S. A. Formation of Protein/protein Complexes in Vacuo. J. Am. Chem. Soc. 2001, 123, 12428–12429.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2002

Authors and Affiliations

  • J. Mitchell Wells
    • 1
  • Paul A. Chrisman
    • 1
  • Scott A. McLuckey
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations