Skip to main content
Log in

Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Materials data deep-excavation is very important in materials genome exploration. In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements, heat treatment parameters and materials properties, a 11×12×12×4 back-propagation (BP) artificial neural network (ANN) was set up. Alloying element contents, quenching and tempering temperatures were selected as input; hardness, tensile and yield strength were set as output parameters. The ANN shows a high fitting precision. The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model. The results indicate that high temperature hardness increases with increasing alloying element content of C, Si, Mo, W, Ni, V and Cr to a maximum value and decreases with further increase in alloying element content. The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature, and possess an optimal value with increasing tempering temperature. This model provides a new tool for novel hot die steel design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Can, C. Heavey, Comput. Oper. Res. 39 (2012) 424–436.

    Article  Google Scholar 

  2. C. I. Rocabruno-Valdés, L. F. Ramírez-Verduzco, Fuel 147 (2015) 9–17.

    Article  Google Scholar 

  3. H. Zhang, S. Du, Y. Cao, Ceram. Int. 40 (2014) 2287–2293.

    Article  Google Scholar 

  4. R. Haj-Ali, H. K. Kim, S. W. Koh, Int. J. Plasticity 24 (2008) 371–396.

    Article  Google Scholar 

  5. A. Seibi, S. M. Al-Alawi, Eng. Fract. Mech. 56 (1997) 311–319.

    Article  Google Scholar 

  6. J. Kasperkiewicz, J. Mater. Process. Technol. 106 (2000) 74–79.

    Article  Google Scholar 

  7. S. E. Restrepo, S. T. Giraldo, B. J. Thijsse, Comp. Mater. Sci. 86 (2014) 170–173.

    Article  Google Scholar 

  8. J. J. De Pablo, B. Jones, C. L. Kovac, Curr. Opin. Solid State Mater. Sci. 18 (2014) 99–117.

    Article  Google Scholar 

  9. T. Austin, Mater. Discovery 3 (2016) 1–12.

    Article  Google Scholar 

  10. W. Sha, K. L. Edwards, Mater. Des. 28 (2007) 1747–1752.

    Article  Google Scholar 

  11. P. Li, K. Xue, A. M. Cao, Journal of Hefei University of Technology (Natural Science) 9 (2004) 19–21 (in Chinese).

    Google Scholar 

  12. C. Z. Huang, L. Zhang, L. He, J. Sun, J. Mater. Process. Technol. 129 (2002) 399–402.

    Article  Google Scholar 

  13. M. Col, H. M. Ertunc, M. Ylmaz, Mater. Des. 28 (2007) 488–495.

    Article  Google Scholar 

  14. W. Sitek, L. A. Dobrzanski, J. Zaclona, J. Mater. Process. Technol. 157–158 (2004) 245–249.

    Article  Google Scholar 

  15. M. Q. Li, X. M. Liu, A. M. Xiong, J. Mater. Process. Technol. 121 (2002) 1–4.

    Article  Google Scholar 

  16. W. You, Y. X. Liu, B. Z. Bai, H. S. Fang, J. Iron Steel Res. Int. 15 (2008) No. 2, 87–90.

    Article  Google Scholar 

  17. K. M. Chen, X. H. Cui, Q. C. Jiang, B. Hong, J. Iron Steel Res. Int. 13 (2006) No. 5, 53–59.

    Article  Google Scholar 

  18. J. H. Liu, G. X. Wang, Y. P. Bao, J. Iron Steel Res. Int. 19 (2012) No. 11, 1–7.

    Article  Google Scholar 

  19. Q. C. Zhou, X. C. Wu, N. N. Shi, Mater. Sci. Eng. A 528 (2011) 5696–5700.

    Article  Google Scholar 

  20. X. H. Cui, J. S. Jun, Z. R. Yang, J. Iron Steel Res. Int. 15 (2008) No. 4, 67–72.

    Article  Google Scholar 

  21. H. J. Xie, X. C. Wu, Y. A. Min, J. Iron Steel Res. Int. 15 (2008) No. 5, 56–61.

    Article  Google Scholar 

  22. Z. Y. Zhu, Materials for Mechnical Engineering 25 (2001) 4–9 (in Chinese).

    Google Scholar 

  23. H. Pouraliakbar, M. J. Khalaj, M. Nazerfakhar, G. Jhalaj, J. Iron Steel Res. Int. 22 (2015) 446–450.

    Article  Google Scholar 

  24. A. He, X. T. Wang, G. L. Xie, X. Y. Yang, H. L. Zhang, J. Iron Steel Res. Int. 22 (2015) 721–729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, Jc. & Cao, Y. Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network. J. Iron Steel Res. Int. 24, 1254–1260 (2017). https://doi.org/10.1016/S1006-706X(18)30025-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(18)30025-6

Key words

Navigation