Skip to main content
Log in

Effect of solution pH, Cl concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of solution pH, Cl concentration and temperature on the electrochemical corrosion behavior of PH13-8Mo steel in acidic solution was investigated by using the electrochemical tests, scanning electron microscopy and X-ray photoelectron spectroscopy. The PH13-8Mo martensitic precipitation hardened stainless steel is in the passivity state when the pH value is above 3.0, below which the anodic polarization curves of the steel are actively dissolved. The corrosion current density gradually decreases with increasing the solution pH and decreasing Cl concentration and solution temperature. Pits are initiated on the sample surface in the presence of the Cl and gradually developed into uniform corrosion with increasing the Cl concentrations. Moreover, the corrosion is more serious with an increase in solution temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Brühl, R. Charadia, S. Simison, D. G. Lamas, A. Cabo, Surf. Coat. Technol. 204 (2010) 3280–3286.

    Article  Google Scholar 

  2. H. Zhang, Y. L. Zhao, Z. D. Jiang, Mater. Lett. 59 (2005) 3370–3374.

    Article  Google Scholar 

  3. D. Nakhaie, M. H. Moayed, Corros. Sci. 80 (2014) 290–298.

    Article  Google Scholar 

  4. J. Mittra, G. K. Dey, D. Sen, A. K. Patra, S. Mazumder, P. K. De, Scripta Mater. 51 (2004) 349–353.

    Article  Google Scholar 

  5. Z. Guo, W. Sha, D. Vaumousse, Acta Mater. 51 (2003) 101–116.

    Article  Google Scholar 

  6. H. Leitner, R. Schnitzer, M. Schober, S. Zinner, Acta Mater. 59 (2011) 5012–5022.

    Article  Google Scholar 

  7. M. Jong, F. Schmalz, J. W. Rensman, N. V. Luzginova, O. Wouters, J. B. J. Hegeman, J. G. Vander, J. Nucl. Mater. 417 (2011) 145–148.

    Article  Google Scholar 

  8. Y. B. Hu, C. F. Dong, M. Sun, K. Xiao, P. Zhong, X. G. Li, Corros. Sci. 53 (2011) 4159–4165.

    Article  Google Scholar 

  9. P. Ghods, O. B. Isgor, G. A. Mcrae, G. P. Gu, Corros. Sci. 52 (2010) 1649–1659.

    Article  Google Scholar 

  10. D. Cicolin, M. Trueba, S. P. Trasatti, Electrochim. Acta 124 (2014) 27–35.

    Article  Google Scholar 

  11. B. Zaid, D. Saidi, A. Benzaid, S. Hsdji, Corros. Sci. 50 (2008) 1841–1847.

    Article  Google Scholar 

  12. D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, J. Magnesium Alloy. 2 (2014) 325–334.

    Article  Google Scholar 

  13. C. Cao, M. M. S. Cheung, Constr. Build. Mater. 51 (2014) 75–81.

    Article  Google Scholar 

  14. V. S. Raja, B. S. Padekar, Corros. Sci. 75 (2013) 176–183.

    Article  Google Scholar 

  15. S. M. A. El-Haleem, S. A. El-Wanees, Mater. Chem. Phys. 128 (2011) 418–426.

    Article  Google Scholar 

  16. H. S. Klapper, J. Goellner, A. Burkert, A. Heyn, Corros. Sci. 75 (2013) 239–247.

    Article  Google Scholar 

  17. Y. Wang, G. Cheng, W. Wu, Y. Li, X. Li, Appl. Surf. Sci. 349 (2015) 746–756.

    Article  Google Scholar 

  18. S. Liu, H. Sun, L. Sun, H. Fan, Corros. Sci. 65 (2012) 520–527.

    Article  Google Scholar 

  19. M. C. Zhao, M. Liu, G. L. Song, A. Atrens, Corros. Sci. 50 (2008) 3168–3178.

    Article  Google Scholar 

  20. D. N. Zou, R. Liu. J. Li, W. Zhang, D. Wang, Y. Han, J. Iron Steel Res. Int. 21 (2014) 630–636.

    Article  Google Scholar 

  21. M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. C. Belo, Corros. Sci. 47 (2005) 581–591.

    Article  Google Scholar 

  22. J. Kang, J. Li, K. Y. Zhao, X. Bai, Q. L. Yong, J. Su. J. Iron Steel Res. Int. 22 (2015) 1156–1163.

    Article  Google Scholar 

  23. A. A. A. Azim, S. H. Sanad, Electrochim. Acta 17 (1972) 1699–1704.

    Article  Google Scholar 

  24. I. Nicic, D. D. Macdonald, J. Nucl. Mater. 379 (2008) 54–58.

    Article  Google Scholar 

  25. A. Fattah-Alhosseini, M. A. Golozar, A. Saatchi, K. Raeissi, Corros. Sci. 52 (2010) 205–209.

    Article  Google Scholar 

  26. S. Yang, D. D. Macdonald, Electrochim. Acta 52 (2007) 1871–1879.

    Article  Google Scholar 

  27. J. Kang, Y. Yang, X. Jiang, H. Shao, Corros. Sci. 50 (2008) 3576–3580.

    Article  Google Scholar 

  28. P. Zhong, K. Xiao, C. Dong, J. Zhong, M. Sun, X. Li, Microstructure, Properties and Corrosion Behavior of Ultra-high Strength Steel, Science Press, Beijing, 2014 (in Chinese).

    Google Scholar 

  29. M. Bojinov, G. Fabricius, P. Kinnunen, T. Laintinen, K. Makela, T. Saario, G. Sundholm, Electrochim. Acta 45 (2000) 2791–2802.

    Article  Google Scholar 

  30. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corro. Sci. 50 (2008) 780–794.

    Article  Google Scholar 

  31. M. Keddam, O. R. Mattos, H. Takenouti, Electrochim. Acta 31 (1986) 1159–1165.

    Article  Google Scholar 

  32. I. Annergren, M. Keddam, H. Takenouti, D. Thierry, Electrochim. Acta 38 (1993) 763–771.

    Article  Google Scholar 

  33. X. C. Han, J. Li, K. Y. Zhao, W. Zhang, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 74–79.

    Article  Google Scholar 

  34. R. M. Fernández-Domene, E. Blasco-Tamarit, D. M. García-García, J. Garcia-Anton, Electrochim. Acta 95 (2013) 1–11.

    Article  Google Scholar 

  35. C. V. Vidal, A. I. Muñoz, Electrochim. Acta 55 (2011) 8445–8452.

    Article  Google Scholar 

  36. P. Kwakhong, A. Artnaseaw, C. Kruehong, J. Iron Steel Res. Int. 22 (2015) 746–751.

    Article  Google Scholar 

  37. L. Zhang, X. G. Li, C. W. Du, J. Iron Steel Res. Int. 16 (2009) No. 6, 52–57.

    Article  Google Scholar 

  38. A. Fattah-Alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, N. Attarzadeh, Corros. Sci. 53 (2011) 3186–3192.

    Article  Google Scholar 

  39. L. W. Tsay, H. L. Lu, C. Chen, Corros. Sci. 50 (2008) 2506–2511.

    Article  Google Scholar 

  40. A. Di Paola, Electrochim. Acta 34 (1989) 203–210.

    Article  Google Scholar 

  41. H. H. Mao, X. Qi, J. Cao, L. C. An, Y. T. Yang, J. Iron Steel Res. Int. 24 (2017) 561–566.

    Article  Google Scholar 

  42. J. Huang, X. Wu, E. H. Han, Corros. Sci. 52 (2010) 3444–3452.

    Article  Google Scholar 

  43. J. Huang, X. Wu, E. H. Han, Corros. Sci. 51 (2009) 2976–2982.

    Article  Google Scholar 

  44. Y. F. Cheng, F. R. Steward, Corros. Sci. 46 (2004) 2405–2420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-sheng Yin Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xy., Fan, Ch., Wu, Ql. et al. Effect of solution pH, Cl concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments. J. Iron Steel Res. Int. 24, 1238–1247 (2017). https://doi.org/10.1016/S1006-706X(18)30023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(18)30023-2

Key words

Navigation