Skip to main content
Log in

In-situ observation of microstructural evolution in reheated low carbon bainite weld metals with various Ni contents

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates. The specimens with various nickel contents were adopted for the observation. In the specimen with low fraction of Ni (⩽ 2 wt. % ), granular bainite microstructure (i.e. broad surface relief) transformation from intragranular nucleation site was in-situ observed, while, lath bainite microstructure originating from grain boundary of austenite was in-situ observed for specimens with high mass percentage of Ni (⩾ 4 wt. % ). With increasing nickel content, the transformation temperature dropped. The prior austenite grain size was initially depressed and subsequently coarsened dramatically with the addition of Ni. The microstructure difference was ascribed to various nucleation sites and growth direction in the matrix. On account of those observations, not only the chemical component, cooling rate and microstructure were systematically correlated, but also the microstructural evolution was definite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barbacki, J. Mater. Process. Technol. 53 (1995) 57–63.

    Article  Google Scholar 

  2. H. K. D. H. Bhadeshia, J. W. Christian, Metall. Trans. A 21 (1990) 767–797.

    Article  Google Scholar 

  3. H. K. D. H. Bhadeshia, Mater. Sci. Technol. 15 (1999) 22–29.

    Article  Google Scholar 

  4. A. Lambert-Perlade, A. F. Gourgues, A. Pineau, Acta Mater. 52 (2004) 2337–2348.

    Article  Google Scholar 

  5. S. G. Park, K. H. Lee, K. D. Min, M. C. Kim, B. S. Lee, Met. Mater. Int. 19 (2013) 4954–4959.

    Google Scholar 

  6. Z. Y. Zhang, R. A. Farrar, J. Mater. Sci. 30 (1995) 5581–5588.

    Article  Google Scholar 

  7. F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, P. Brown, Mater. Sci. Technol. 17 (2001) 512–516.

    Article  Google Scholar 

  8. F. G. Caballero, M. K. Miller, C. Garcia-Mateo, C. Capdevila, C. Garcia de Andres, JOM 60 (2008) 16–21.

    Article  Google Scholar 

  9. H. Y. Li, X. W. Lu, X. C. Wu, Mater. Sci. Eng. A 527 (2010) 6255–6260.

    Article  Google Scholar 

  10. H. G. Lambers, D. Canadinc, H. J. Maier, Mater. Sci. Eng. A 541 (2012) 73–80.

    Article  Google Scholar 

  11. S. Das, I. Timokhina, S. B. Singh, Mater. Sci. Eng. A 534 (2012) 485–494.

    Article  Google Scholar 

  12. K. Y. Zhu, C. Oberbillig, C. Musik, Mater. Sci. Eng. A 528 (2011) 4222–4231.

    Article  Google Scholar 

  13. Y. Komiozo, Investigation for Microstructure and Toughness of Low Carbon and Low Alloy Steel Weld Metal, Osaka University, Osaka, 1982, pp. 100–112.

    Google Scholar 

  14. H. Terasaki, Y. Komizo, M. Yonemura, T. Osuki, Metall. Mater. Trans. A 37 (2006) 1261–1266.

    Article  Google Scholar 

  15. M. K. Kang, M. X. Zhang, M. Zhu, Acta Mater. 54 (2006) 2121–2129.

    Article  Google Scholar 

  16. D. Zhang, H. Terasaki, Y. I. Komizo, J. Alloy. Compd. 484 (2009) 929–933.

    Article  Google Scholar 

  17. T. Hidenori, S. Yutaro, T. Atsushi, Metall. Mater. Trans. A 45 (2014) 3554–3559.

    Article  Google Scholar 

  18. P. Kolmskog, A. Borgenstam, M. Hillert, Metall. Mater. Trans. A 43 (2012) 4984–4988.

    Article  Google Scholar 

  19. M. A. Quintana, S. S. Babu, J. Major, C. Dallam, M. James, in: Proceedings of the 8th International Pipeline Conference, Volume 2, IPC2010, International Petroleum Technology Institute and the Pipeline Division, Alberta, Canada, 2010, pp. 599–608.

  20. G. Xu, F. Liu, L. Wang, H. J. Hu, Scripta Mater. 68 (2013) 833–837.

    Article  Google Scholar 

  21. H. Terasaki, Y. Komizo, Sci. Technol. Weld Join. 11 (2006) 561–566.

    Article  Google Scholar 

  22. T. Ko, S. A. Cottrell, J. Iron Steel Inst. 172 (1952) 307–312.

    Google Scholar 

  23. A. J. Craven, K. He, L. A. J. Garvie, T. N. Baker, Acta Mater. 48 (2000) 3857–3868.

    Article  Google Scholar 

  24. S. G. Hong, K. B. Kang, C. G. Park, Scripta Mater. 46 (2002) 163–168.

    Article  Google Scholar 

  25. S. Zhao, D. L. Wei, R. B. Li, L. Zhang, Mater. Trans. 55 (2014) 1274–1279.

    Article  Google Scholar 

  26. S. E. Offerman, N. H. van Dijk, J. Sietsma, S. Grigull, E. M. Lauridsen, L. Margulies, H. F. Poulsen, M. Th. Rekveldt, S. van der Zwaag, Science 298 (2002) 1003–1005.

    Article  Google Scholar 

  27. J. W. Christian, The Theory of Transformations in Metals and Alloys: Part I, 3rd ed., Oxford, London, 1975.

    Google Scholar 

  28. H. K. D. H. Bhadeshia, A. R. Waugh, Acta Metall. 30 (1982) 775–784.

    Article  Google Scholar 

  29. S. K. Ghosh, N. Bhowmik, A. Haldar, A. A. Chattopadhyay, Mater. Sci. Eng. A 527 (2010) 1082–1088.

    Article  Google Scholar 

  30. L. Y. Lan, C. L. Qiu, D. W. Zhao, X. H. Gao, L. X. Du, J. Mater. Sci. 48 (2013) 4356–4364.

    Article  Google Scholar 

  31. Y. Arai, T. Emi, H. Fredrilsson, H. Shibata, Metall. Mater. Trans. A 36 (2005) 3065–3074.

    Article  Google Scholar 

  32. H. J. Hu, G. Xu, F. Liu, L. Wang, L. X. Zhou, Z. L. Xue, Trans. Mater. Heat Treat. 35 (2014) 83–87 (in Chinese).

    Google Scholar 

  33. T. Kvackaj, I. Mamuzic, ISIJ Int. 38 (1998) 1270–1276.

    Article  Google Scholar 

  34. J. F. Lancaster, Metallurgy of Welding, 2nd ed., George & Unwin, London, 1980.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Cao or Jian-hong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Gj., Cao, R., Chen, Jh. et al. In-situ observation of microstructural evolution in reheated low carbon bainite weld metals with various Ni contents. J. Iron Steel Res. Int. 24, 1206–1214 (2017). https://doi.org/10.1016/S1006-706X(18)30019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(18)30019-0

Key words

Navigation