Skip to main content
Log in

Microstructural evolution and mechanical properties of a new Ni-based heat-resistant alloy during aging at 750 °C

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Microstructural evolution and mechanical properties of a new candidate Ni-based heat-resistant alloy for advanced ultra-supercritical (A-USC) steam turbine rotors were investigated during aging at 750 °C up to 10000 h. The evolutions of γ′ particles inside austenitic grain and M23C6 carbides along grain boundaries were characterized according to their morphologies, distributions, and growth kinetics. Mean radius of the γ′ spherical particles grew from 20.3 to 90.0 nm after aging for 10000 h, and the corresponding coarsening behavior was conformed to the law of Lifschitz-Slyosovd-Wagner (LSW). The weight fraction of γ′ particles slightly increased from 10.0 to 12.0 wt. % after aging of long duration at 750 °C. The Cr-rich M23C6 carbides discontinuously precipitated along grain boundaries, while other detrimental phases were not formed during the aging treatment, and hence the strength of grain boundary was enhanced by these discontinuously distributed carbides. The critical size of γ′ had a direct influence on the maximum hardness of this alloy. Moreover, this alloy presented a good impact toughness for the safety after long time aging at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G. Wright, P. J. Maziasz, F. V. Ellis, T. B. Gibbons, D. A. Woodford, in: B. A. Sakkestad (Eds.), Proceedings of the 29th Internal Conf. on Coal Utilization and Fuel Systems, Coal Technology Association, Florida, USA, 2004, pp. 1079–1092.

    Google Scholar 

  2. K. Singh, BHEL J. 27 (2006) 1–19.

    Google Scholar 

  3. S. Robin, S. Chen, S. Monica, Adv. Mater. Processes 171 (2013) 18–22.

    Google Scholar 

  4. M. Fukuda, in: D. Gandy, J. Shingledecker, R. Viswanathan (Eds.), Proceedings from the 6th International Conference on Advances in Materials Technology for Fossil Plants, ASM International, New Mexico, USA, 2010, pp. 325–333.

    Google Scholar 

  5. Z. D. Liu, H. S. Bao, S. Q. Xu, Q. J. Wang, Y. J. Yang, P. Zhang, B. W. Lei, in: TMS (Eds.), Energy Materials 2014, John Wiley & Sons Inc., New York, 2015, pp. 101–110.

    Chapter  Google Scholar 

  6. F. Abe, Engineering 1 (2015) 211–224.

    Article  Google Scholar 

  7. F. Sun, Y. F. Gu, J. B. Yan, Y. X. Xu, Z. H. Zhong, M. Yuyama, J. Alloy. Compd. 687 (2016) 389–401.

    Article  Google Scholar 

  8. I. S. Kim, B. G. Choi, H. U. Hong, J. Do, C. Y. Jo, Mater. Sci. Eng. A 593 (2014) 55–63.

    Article  Google Scholar 

  9. J. Klöwer, R. U. Husemann, M. Bader, Procedia Eng. 55 (2013) 226–231.

    Article  Google Scholar 

  10. M. Speicher, A. Klenk, K. Maile, E Roos, Adv. Mater. Res. 278 (2011) 241–246.

    Article  Google Scholar 

  11. L. M. Pike, in: R. C. Reed, K. A. Green, P. Caron, T. P. Gabb, M. G. Fahrmann, E. S. Huron, S. A. Woodard (Eds.), Superalloys 2008, John Wiley & Sons Inc., New York, 2008, pp. 191–200.

    Google Scholar 

  12. S. Chomette, J. M. Gentzbittel, B. Viguier, J. Nucl. Mater. 399 (2010) 266–274.

    Article  Google Scholar 

  13. Z. F. Xu, L. Jiang, J. S. Dong, Z. J. Li, X. T. Zhou, J. Alloy. Compd. 620 (2015) 197–203.

    Article  Google Scholar 

  14. J. J. Yu, X. F. Sun, N. R. Zhao, T. Jin, H. R. Guan, Z. Q. Hu, Mater. Sci. Eng. A 460–461 (2007) 420–427.

    Article  Google Scholar 

  15. J. S. Van, T. M. Pollock, Acta Mater. 60 (2012) 1771–1783.

    Article  Google Scholar 

  16. X. B. Zhao, Y. Y. Dang, H. F. Yin, Y. Yuan, J. T. Lu, Z. Yang, Y. F. Gu, J. Alloy. Compd. 644 (2015) 66–70.

    Article  Google Scholar 

  17. Y. Chong, Z. D. Liu, G. Andy, W. Liu, Y. Q. Weng, Mater. Sci. Eng. A 589 (2014) 153–164.

    Article  Google Scholar 

  18. A. Royer, A. Jacques, P. Bastie, M. Véron, Mater. Sci. Eng. A 319–321 (2001) 800–804.

    Article  Google Scholar 

  19. J. H. Oh, I. C. Choi, Y. J. Kim, B. G. Yoo, J. I. Jang, Mater. Sci. Eng. A 528 (2011) 6121–6127.

    Article  Google Scholar 

  20. J. H. Oh, B. G. Yoo, I. C. Choi, J. Mater. Res. 26 (2011) 1253–1259.

    Article  Google Scholar 

  21. Y. H. Rong, Y. X. Guo, G. X. Hu, Metallography 22 (1989) 47–55.

    Article  Google Scholar 

  22. M. Cabibbo, E. Gariboldi, S. Spigarelli, D. Ripamonti, J. Mater. Res. 43 (2008) 2912–2921.

    Google Scholar 

  23. D. Tytko, P. P. Choi, J. Klöwer, A. Kostka, G. Inden, D. Raabe, Acta Mater. 60 (2012) 1731–1740.

    Article  Google Scholar 

  24. S. Q. Zhao, X. S. Xie, G. D. Smith, S. J. Patel, Mater. Sci. Eng. A 355 (2003) 96–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-dong Liu Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Zl., Jiang, Sb., Chen, Zz. et al. Microstructural evolution and mechanical properties of a new Ni-based heat-resistant alloy during aging at 750 °C. J. Iron Steel Res. Int. 24, 513–519 (2017). https://doi.org/10.1016/S1006-706X(17)30078-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30078-X

Key words

Navigation