Skip to main content
Log in

Effect of hot/warm roll-forming process on microstructural evolution and mechanical properties of local thickened U-rib for orthotropic steel deck

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To improve the strength-toughness of traditional U-rib (TUR) and solve the problem of insufficient penetration between TUR and deckplate, a new local thickened U-rib ( LTUR) has been proposed to improve the fatigue resistance of the weld joint under the premise of not increasing thickness and strength of the TUR material. And a hot/warm roll-forming process (RFP) adopting partially induction heating to 700–1000 °C was carried out to fabricate LTUR. The deformation behaviors in the forming process and micro-structure of LTUR have been investigated. Mechanical properties and fracture mechanism of the LTUR after hot/warm RFP have been systematically discussed. Moreover, the results are compared with those obtained in cold RFP. Mechanical properties of the LTUR deformed above the critical transformation temperature (Ac3) show high performance characteristics with marked fatigue resistance and superior toughness. Upon increasing the heating temperature from 700 to 900 °C, the initial coarse ferrite-pearlite structure transform into equiaxed ultrafine ferrite (1–3 µm) and precipitates such as (Nb, Ti)(C, N) are uniformly distributed in the matrix. The average dislocation density of the specimens after hot roll-forming at heating temperature of 900 °C decreases dramatically compared with those of the specimens subjected to the cold RFP. Furthermore, a typical characteristic of ductile fracture mechanism and the high impact energy are more convinced that the specimens deformed above 900 °C have obtained an optimal combination of strength and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Battista, M. S. Pfeil, E. M. L. Carvalho, J. Constr. Steel Res. 64 (2008) 134–143.

    Article  Google Scholar 

  2. P. P. Xanthakos, Theory and Design of Bridges, New York, USA, 1994.

    Google Scholar 

  3. C. K. Oh, K. J. Hong, D. Bae, H. Do, T. J. Han, Int. J. Steel Struct. 11 (2011) 227–234.

    Article  Google Scholar 

  4. D. H. Choi, D. H. Kim, J. H. Choi, D. I. Chang, J. Korean Soc. Steel Constr. 11 (1999) 559.

    Google Scholar 

  5. M. Li, K. Hashimoto, K. Sugiura, J. Bridge Eng. 19 (2014) 04014038.

    Article  Google Scholar 

  6. R. Wolchuk, J. Struct. Eng. 116 (1990) 75–84.

    Article  Google Scholar 

  7. Z. G. Xiao, K. Yamada, S. Ya, X. L. Zhao, Int. J. Fatigue 30 (2008) 1387–1397.

    Article  Google Scholar 

  8. T. J. Rupert, J. C. Trenkle, C. A. Schuh, Acta Mater. 59 (2011) 1619–1631.

    Article  Google Scholar 

  9. D. N. Seidman, E. A. Marquis, D. C. Dunand, Acta Mater. 50 (2002) 4021–4035.

    Article  Google Scholar 

  10. D. A. Terentyev, G. Bonny, L. Malerba, Acta Mater. 56 (2008) 3229–3235.

    Article  Google Scholar 

  11. M. J. Alinger, G. R. Odette, D. T. Hoelzer, Acta Mater. 57 (2009) 392–406.

    Article  Google Scholar 

  12. R. Song, D. Ponge, D. Raabe, R. Kaspar, Acta Mater. 53 (2005) 845–858.

    Article  Google Scholar 

  13. T. K. Lee, C. H. Park, D. L. Lee, C. S. Lee, Mater. Sci. Eng. A 528 (2011) 6558–6564.

    Article  Google Scholar 

  14. K. Hanazaki, J. Tokutomi, J. Yanagimoto, N. Tsuji, Mater. Sci. Eng. A 534 (2012) 720–723.

    Article  Google Scholar 

  15. Y. Estrin, A. Vinogradov, Acta Mater. 61 (2013) 782–817.

    Article  Google Scholar 

  16. E. O. Hall, Proc. Phys. Soc. B 64 (1951) 747–753.

    Article  Google Scholar 

  17. N. J. Petch, J. Iron Steel Inst. 174 (1953) 25–28.

    Google Scholar 

  18. H. W. Park, J. Yanagimoto, Mater. Sci. Eng. A 607 (2014) 542–550.

    Article  Google Scholar 

  19. H. W. Park, K. Shimojima, S. Sugiyama, H. Komineb, J. Yanagimoto, Mater. Sci. Eng. A 624 (2015) 203–212.

    Article  Google Scholar 

  20. G. Krauss, Principles of Heat Treatment of Steel, American Society for Metals, Ohio, 2005.

    Google Scholar 

  21. I. S. Kim, J. S. Son, I. G. Kim, J. Y. Kim, O. S. Kim, J. Mater. Process. Technol. 136 (2003) 139–145.

    Article  Google Scholar 

  22. J. W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1–157.

    Article  Google Scholar 

  23. R. Song, D. Ponge, D. Raabe, J. G. Speer, D. K. Matlock, Mater. Sci. Eng. A 441 (2006) 1–17.

    Article  Google Scholar 

  24. K. Nagato, S. Sugiyama, A. Yanagida, J. Yanagimoto, Mater. Sci. Eng. A 478 (2008) 376–383.

    Article  Google Scholar 

  25. A. Guo, R. D. K. Misra, J. Q. Xu, B. Guo, S. G. Jansto, Mater. Sci. Eng. A 527 (2010) 3886–3892.

    Article  Google Scholar 

  26. V. C. Olalla, V. Bliznuk, N. Sanchez, P. Thibaux, L. A. I. Kestens, R. H. Petrov, Mater. Sci. Eng. A 604 (2014) 46–56.

    Article  Google Scholar 

  27. J. Irvine, T. N. Baker, Mater. Sci. Eng. 64 (1984) 123–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Xf., Liu, J., Han, Jt. et al. Effect of hot/warm roll-forming process on microstructural evolution and mechanical properties of local thickened U-rib for orthotropic steel deck. J. Iron Steel Res. Int. 24, 335–342 (2017). https://doi.org/10.1016/S1006-706X(17)30048-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30048-1

Key words

Navigation