Skip to main content
Log in

Effects of alloying elements X (X=Zr, V, Cr, Mn, Mo, W, Nb, Y) on ferrite/TiC heterogeneous nucleation interface: first-principles study

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The segregation behavior of alloying elements X (X=Zr, V, Cr, Mn, Mo, W, Nb, Y) on the ferrite (100)/TiC(100) interface has been investigated using first principles method, and the work of separation and interface energy of ferrite/TiC interfaces alloyed by these elements were also analyzed. The results indicated that all these alloying additives except Y were thermodynamically favorable because of the negative segregation energy, showing that they have the tendency to segregate to the ferrite/TiC interface. When the Fe atom in the ferrite/TiC interface is replaced by Y, Zr, or Nb, the adhesive strength of the interface will be weakened due to the lower separation work, larger interfacial energy, and weaker electron effects. However, the introduction of Cr, Mo, W, Mn and V will improve the stability of the ferrite/TiC interface through strong interaction between these elements and C, and Cr-doped interface is the most stable structure. Therefore, the Cr, Mo, W, Mn and V in ferrite side of the interface can effectively promote ferrite heterogeneous nucleation on TiC surface to form fine ferrite grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Johansson, Surf. Sci. Rep. 21 (1995) 177–250.

    Article  Google Scholar 

  2. A. Arya, E. A. Carter, J. Chem. Phys. 118 (2003) 8982–8996.

    Article  Google Scholar 

  3. Y. Liu, Y. Jiang, R. Zhou, J. Feng, J. Alloy. Compd. 582 (2014) 500–504.

    Article  Google Scholar 

  4. L. Wu, Y. Wang, Z. Yan, J. Zhang, F. Xiao, B. Liao, J. Alloy. Compd. 561 (2013) 220–227.

    Article  Google Scholar 

  5. G. K. Tirumalasetty, C. M. Fang, J. Jansen, T. Yokosawa, M. F. J. Boeije, J. Sietsma, M. A. van Huis, H. W. Zandbergen, Acta Mater. 78 (2014) 161–172.

    Article  Google Scholar 

  6. S. M. Hong, E. K. Park, J. J. Park, M. K. Lee, J. Gu Lee, Mater. Sci. Eng. A 643 (2015) 37–46.

    Article  Google Scholar 

  7. M. K. Lee, E. K. Park, J. J. Park, C. K. Rhee, Mater. Chem. Phys. 138 (2013) 423–426.

    Article  Google Scholar 

  8. J. H. Jang, C. H. Lee, Y. U. Heo, D. W. Suh, Acta Mater. 60 (2012) 208–217.

    Article  Google Scholar 

  9. C. Stampfl, W. Mannstadt, R. Asahi, A. Freeman, Phys. Rev. B 63 (2001) 155106–155207.

    Article  Google Scholar 

  10. Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan, H. He, M. Wang, Mater. Charact. 111 (2016) 122–127.

    Article  Google Scholar 

  11. S. P. Hong, S. I. Kim, T. Y. Ahn, S. T. Hong, Y. W. Kim, Mater. Charact. 115 (2016) 8–13.

    Article  Google Scholar 

  12. H. Aliakbarzadeh, S. Mirdamadi, M. Tamizifar, Mater. Sci. Technol. 26 (2010) 1373–1376.

    Article  Google Scholar 

  13. S. H. Chung, H. P. Ha, W. S. Jung, J. Y. Byun, ISIJ Int. 46 (2006) 1523–1531.

    Article  Google Scholar 

  14. M. Mizuno, I. Tanaka, H. Adachi, Acta Mater. 46 (1998) 1637–1645.

    Article  Google Scholar 

  15. H. Sawada, S. Taniguchi, K. Kawakami, T. Ozaki, Modell. Simul. Mater. Sci. Eng. 21 (2013) 45012–45024.

    Article  Google Scholar 

  16. W. S. Jung, S. H. Chung, H. P. Ha, J. Y. Byun, Solid State Phenom. 124 (2007) 1625–1628.

    Article  Google Scholar 

  17. Y. Li, Y. Gao, B. Xiao, T. Min, S. Ma, D. Yi, Appl. Surf. Sei. 257 (2011) 5671–5678.

    Article  Google Scholar 

  18. J. Yang, P. Zhang, Y. Zhou, J. Guo, X. Ren, Y. Yang, Q. Yang, J. Alloy. Compd. 556 (2013) 160–166.

    Article  Google Scholar 

  19. J. Wang, J. Yang, C. Wang, Y. Zhou, X. Xing, Y. Yang, Q. Yang, Comput. Mater. Sci. 101 (2015) 108–114.

    Article  Google Scholar 

  20. J. Li, M. Zhang, Y. Zhou, G. Chen, Appl. Surf. Sci. 307 (2014) 593–600.

    Article  Google Scholar 

  21. H. Z. Zhang, S. Q. Wang, J. Phys.: Condens. Matter. 19 (2007) 226003–226012.

    Google Scholar 

  22. C. Wang, C. Y. Wang, Surf. Sci. 602 (2008) 2604–2609.

    Article  Google Scholar 

  23. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne, Cryst. Mater. 220 (2005) 567–570.

    Google Scholar 

  24. M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter. 14 (2002) 2717–2744.

    Google Scholar 

  25. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892–7895.

    Article  Google Scholar 

  26. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188–5192.

    Article  MathSciNet  Google Scholar 

  27. H. Li, L. Zhang, Q. Zeng, K. Guan, K. Li, H. Ren, S. Liu, L. Cheng, Solid State Commun. 151 (2011) 602–606.

    Article  Google Scholar 

  28. K. Nakamura, M. Yashima, Mater. Sci. Eng. B 148 (2008) 69–72.

    Article  Google Scholar 

  29. B. W. Wang, Y. P. Xie, S. J. Zhao, J. Li, L. J. Hu, Physica Status Solidi (b) 251 (2014) 950–957.

    Article  Google Scholar 

  30. M. Straumanis, D. Kim, Z. Metallkd. 60 (1969) 272–277.

    Google Scholar 

  31. J. Li, Y. Yang, L. Li, J. Lou, X. Luo, B. Huang, J. Appl. Phys. 113 (2013) 023516–023527.

    Article  Google Scholar 

  32. J. Li, Y. Yang, G. Feng, X. Luo, Q. Sun, N. Jin, J. Appl. Phys. 114 (2013) 163522–163533.

    Article  Google Scholar 

  33. Y. F. Han, Y. B. Dai, J. Wang, D. Shu, B. D. Sun, Appl. Surf. Sci. 257 (2011) 7831–7836.

    Article  Google Scholar 

  34. S. Lu, Q. M. Hu, R. Yang, B. Johansson, L. Vitos, Phys. Rev. B 82 (2010) 195103.

    Article  Google Scholar 

  35. S. J. Lee, Y. K. Lee, A. Soon, Appl. Surf. Sci. 258 (2012) 9977–9981.

    Article  Google Scholar 

  36. M. A. Razzak, Bull. Mater. Sci. 34 (2011) 1439–1445.

    Article  Google Scholar 

  37. Q. Wu, J. Zhang, Y. Sun, Corros. Sci. 52 (2010) 1003–1010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-hui Xiong Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Hh., Zhang, Hh., Zhang, Hn. et al. Effects of alloying elements X (X=Zr, V, Cr, Mn, Mo, W, Nb, Y) on ferrite/TiC heterogeneous nucleation interface: first-principles study. J. Iron Steel Res. Int. 24, 328–334 (2017). https://doi.org/10.1016/S1006-706X(17)30047-X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30047-X

Key words

Navigation