Skip to main content
Log in

Prediction of mechanical behavior of ferrite-pearlite steel

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A new approach describing the flow stress of ferrite-pearlite steel has been proposed, which divided the deformation process into three stages based on whether ferrite or pearlite yielded. Iso-work increment assumption was applied to describe the transfer of load between the components. The physically based model to describe ferrite was approximated with Swift s equation in order to obtain the analytic solution. The tensile strength of ferrite-pearlite had a linear relation with pearlite volume fraction, square root reciprocal of ferrite grain size and reciprocal of pearlite interlamellar spacing. Moreover, a model to calculate the tensile strength of ferrite-pearlite steel was proposed. The predicted values of tensile strength were in good agreement with experimental results when the pearlite volume fraction was less than 20%. Considering the plastic relaxation mechanisms, the internal stress was modified with pearlite volume fraction, total strain, yield stress of ferrite and pearlite when the pearlite volume fraction was more than 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Watanabe, D. Setoyama, N. Nagasako, N. Iwata, K. Nakanishi, Int. J. Numer. Meth. Eng. 89 (2012) 829–845.

    Article  Google Scholar 

  2. S. Allein, O. Bouaziz, Mater. Sci. Eng. A 496 (2008) 329–336.

    Article  Google Scholar 

  3. Y. H. Zhao, W. Yang, N. Q. Peng, G. B. Tang, Z. D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 7, 9–15.

    Article  Google Scholar 

  4. J. Bouquerel, K. Verbeken, B. de Cooman, Acta Mater. 54 (2006) 1443–1456.

    Article  Google Scholar 

  5. O. Bouaziz, T. Iung, M. Kandel, C. Lecomte, J. Phys. Colloques 11 (2001) 223–232.

    Google Scholar 

  6. J. Lian, Z. Jiang, J. Liu, Mater. Sci. Eng. A 147 (1991) 55–65.

    Article  Google Scholar 

  7. K. Cho, J. Gurland, Metall. Trans. A 19 (1998) 2027–2040.

    Article  Google Scholar 

  8. S. Sangal, N. C. Goel, K. Tangri, Metall. Trans. A 16 (1985) 2023–2029.

    Article  Google Scholar 

  9. A. Fischmeister, B. Karlsson, Z. Metallkd. 67 (1977) 311–327.

    Google Scholar 

  10. B. Karlsson, G. Linden, Mater. Sci. Eng. 17 (1975) No. 2, 209–219.

    Article  Google Scholar 

  11. Y. Tomota, M. Umemoto, N. Komatsubara, A. Hiramatsu, N. Nakajima, A. Moriya, T. Watanabe, S. Nanba, G. Anan, K. Kunishige, ISIJ Int. 32 (1992) 343–349.

    Article  Google Scholar 

  12. Y. Tomota, S. Nakamura, K. Kuroki, I. Tamura, Mater. Sci. Eng. 46 (1980) 69–74.

    Article  Google Scholar 

  13. E. Lindfeldt, M. Eku, J. Multiscale Modelling 4 (2013) 1–19.

    Google Scholar 

  14. G. Laschet, P. Fayek, T. Henke, H. Quade, U. Prahl, Mater. Sci. Eng. A 566 (2013) 143–156.

    Article  Google Scholar 

  15. B. Berisha, C. Raemy, C. Becker, M. Gorji, P. Hora, Acta Mater. 100 (2015) 191–201.

    Article  Google Scholar 

  16. D. W. Suh, J. H. Bae, J. Y. Cho, K. H. Oh, H. C. Lee, ISIJ Int. 41 (2001) 782–787.

    Article  Google Scholar 

  17. N. Ishikawa, D. M. Parks, S. Socrate, M. Kurihara, ISIJ Int. 40 (2000) 1170–1179.

    Article  Google Scholar 

  18. Y. Tomota, I. Tamura, Trans. Iron Steel Inst. Jpn. 22 (1982) 665–677.

    Article  Google Scholar 

  19. O. Bouaziz, P. Buessler, Rev. Métall. 99 (2002) 71–77.

    Article  Google Scholar 

  20. T. S. Byun, I. S. Kim, J. Mater. Sci. 26 (1991) 3917–3925.

    Article  Google Scholar 

  21. O. Bouaziz, P. Buessler, Adv. Eng. Mater. 6 (2004) 79–83.

    Article  Google Scholar 

  22. I. Tamura, Y. Tomota, H. Ozawa, Proc. Conf. on Microstructure and Design of Alloys, Institute of Metals and Iron and Steel Institute, London, 1973, pp. 611–615.

    Google Scholar 

  23. T. Huper, S. Endo, N. Ishikawa, K. Osawa, ISIJ Int. 39 (1999) 288–294.

    Article  Google Scholar 

  24. H. Petitgand, H. Regle, O. Bouaziz, T. Iung, S. Barrois (eds.), Proc. IF Steels 2000, ISS Conf, Pittsburgh, 2000, pp. 339–346.

    Google Scholar 

  25. I. Gutierrez, Metalurgija 11 (2005) 201–214.

    Google Scholar 

  26. S. Parker, J. Wadsworth, I. Gutierrez, R. Rodriguez, L. Vandenberghe, U. Lotter, Property Models for Mixed Microstructures, European Communities, Belgium, 2003.

    Google Scholar 

  27. K. Araki, Y. Takada, K. Nakaoka, Trans. Iron Steel Inst. Jpn. 17 (1977) 710–717.

    Google Scholar 

  28. Y. Tomota, K. Kuroki, T. Mori, I. Tamura, Mater. Sci. Eng. 24 (1976) 85–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Tang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tang, D. & Song, Y. Prediction of mechanical behavior of ferrite-pearlite steel. J. Iron Steel Res. Int. 24, 321–327 (2017). https://doi.org/10.1016/S1006-706X(17)30046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30046-8

Key words

Navigation