Skip to main content
Log in

Effects of process parameters on surface quality, composition segregation, microstructure and properties of QSn6. 5-0. 1 alloy slabs fabricated by HCCM horizontal continuous casting

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Columnar-grained QSn6. 5-0. 1 alloy slabs with a width of 70 mm and thickness of 10 mm were fabricated by heating-cooling combined mold (HCCM) horizontal continuous casting. The effects of process parameters on solidification microstructure, surface quality, composition segregation and mechanical properties were studied. The results showed that the slabs with good surface quality, excellent mechanical properties and no obvious segregation could be prepared at the melt casting temperature of 1 250 °C, the heating-mold temperature of 1150–1200 °C, the cooling water flow rate of 600 L/h and the casting speed of 20–80 mm/min. The slabs had the yield strength of 124–155 MPa, the elongation rate of 46.6%–56.3% and the surface roughness of 0.22–0.55 µm, which enabled them to be directly processed without subsequent milling surface. The ratio of Sn content in the surface to that in the core was 0.83–1.10, with an average value close to 1.0, and not obviously influenced by process parameters. When the casting speed increased from 20 to 80 mm/min, the grain size changed little if the other process parameters were the same. When the heating-mold temperature increased from 1150 to 1 200 °C, the grain size was obviously refined and became more uniform if the casting speed was the same. Within the range of the casting speed at which the columnar grain structure could be obtained, the columnar grain size was mainly influenced by the heating-mold temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. F. Yuan, L. Xu, Hunan Nonferrous Metals 30 (2014) No. 3, 46–49 (in Chinese).

    Google Scholar 

  2. D. H. Liu, P. Ma, W. Y. Cui, Nonferrous Metals Processing 40 (2011) No. 5, 8–12 (in Chinese).

    Google Scholar 

  3. H. Kato, M. Takama, Y. Iwai, Wear 254 (2003) 573–578.

    Article  Google Scholar 

  4. D. Satovic, L. V. Žulj, V. Desnica, Corros. Sci. 51 (2009) 1596–1603.

    Article  Google Scholar 

  5. X. Liao, F. Cao, A. Chen, Trans. Nonferrous Met. Soc. China 22 (2012) 1239–1249.

    Article  Google Scholar 

  6. X. Li, J. H. Yang, Copper Engineering (2013) No. 4, 11–15 (in Chinese).

    Google Scholar 

  7. F. Kohler, T. Campanella, S. Nakanishi, Acta Mater. 56 (2008) 1519–1528.

    Article  Google Scholar 

  8. X. Liu, J. Luo, X. Wang, Trans. Nonferrous Met. Soc. China 25 (2015) 1901–1910.

    Article  Google Scholar 

  9. R. C. Muthiah, J. A. Pfaendtner, C. J. McMahon Jr., Y. Xu, J. L. Bassani, Mater. Sci. Eng. A 234–236 (1997) 1033–1036.

    Article  Google Scholar 

  10. R. T. Zhou, Journal of Anhui University of Technology (Natural Science) 24 (2007) No. 1, 29–32 (in Chinese).

    Google Scholar 

  11. J. C. Zou, China Nonferrous Metals (2013) No. 16, 30–32 (in Chinese).

    Google Scholar 

  12. J. P. Lu, F. W. Dong, H. F. Lou, C. M. Huang, L. M. Xu, Physical Testing and Chemical Analysis Part A: Physical Testing (2003) No. 8, 398–400 (in Chinese).

    Google Scholar 

  13. J. P. Lu, S. H. Zhang, Y. X. Xin, Special Casting & Nonferrous Alloys (2003) No. 3, 57–59 (in Chinese).

    Google Scholar 

  14. C. H. Hui, T. J. Li, W. Z. Jin, J. Guo, Rare Metal Materials and Engineering 37 (2008) 721–724 (in Chinese).

    Google Scholar 

  15. T. J. Li, K. Jin, X. G. Zhang, Nonferrous Metals Processing (2006) No. 1, 15–16 (in Chinese).

    Google Scholar 

  16. X. Li, A. Gagnoud, Y. Fautrelle, Z. M. Ren, R. Moreau, Y. D. Zhang, C. Esling, Acta Mater. 60 (2012) 3321–3332.

    Article  Google Scholar 

  17. A. E. Ares, S. F. Gueijman, C. E. Schvezov, J. Cryst. Growth 312 (2010) 2154–2170.

    Article  Google Scholar 

  18. J. X. Xie, J. Mei, X. H. Liu, X. F. Liu, A Heating-cooling Combined Mold Horizontal Continuous Casting Method and Equipment for Production of Cupronickel Alloy Pipe, China, 201010501407.4, 2010.

  19. J. Mei, X. H. Liu, J. X. Xie, Int. J. Miner. Metall. Mater. 19 (2012) 339–347.

    Article  Google Scholar 

  20. J. Mei, X. H. Liu, J. X. Xie, Trans. Nonferrous Met. Soc. China 22 (2012) 1430–1439.

    Google Scholar 

  21. J. Mei, X. H. Liu, Y. B. Jiang, J. X. Xie, Trans. Nonferrous Met. Soc. China 22 (2012) 2529–2538.

    Article  Google Scholar 

  22. J. Mei, Y. B. Jiang, X. H. Liu, J. X. Xie, Int. J. Miner. Metall. Mater. 19 (2012) 748–758.

    Article  Google Scholar 

  23. Y. B. Jiang, J. Mei, S. Chen, J. X. Xie, in: The 12th IUMRS International Conference in Asia, Bussan, Korea, 2012, pp.

    Google Scholar 

  24. D. Tourret, A. Karma, Acta Mater. 82 (2015) 64–83.

    Article  Google Scholar 

  25. G. P. Zhou, Z. Y. Liu, S. C. Yu, J. Chen, Y. Q. Qiu, G. D. Wang, J. Iron Steel Res. Int. 18 (2011) No. 2, 18–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-hua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Xh., Fu, Hd. et al. Effects of process parameters on surface quality, composition segregation, microstructure and properties of QSn6. 5-0. 1 alloy slabs fabricated by HCCM horizontal continuous casting. J. Iron Steel Res. Int. 24, 273–281 (2017). https://doi.org/10.1016/S1006-706X(17)30040-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30040-7

Key words

Navigation