Skip to main content
Log in

Size analysis of slag eye formed by gas blowing in ladle refining

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The formation of slag eye in a gas stirred ladle was studied through cold models and industrial trials. In the cold model, water and sodium tungstate solution were employed to simulate liquid steel, and silicon oil was employed to simulate slag. The simulation results revealed that the gas flow rate and bath height had strong effects on the slag eye size. In particular, the thickness of slag layer played a strong role in the slag eye size. In addition, the slag eye could not be formed when the thickness of the top layer was more than 4 cm in water-silicone oil model. Besides, the section area of vessel had a great impact on the slag eye size. Industrial trials results showed a similar trend that the gas flow rate was very significant on the slag eye size. The predictions of the existing models showed larger predictions deviations compared with the experimental data. Moreover, a new model without fitting parameters was developed based on force balance and mathematical derivation, and verified by the experimental data. The new model provides the prediction with small deviations by comparing with the data acquired from cold models and industrial trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area of section A″B, cm2

A e :

Slag eye size, cm2

A α :

Section area of vessel, cm2

A p :

Plum size, cm2

\(A_{\text{e}}^*\) :

Dimensionless slag eye

\(A_{\text{p}}^*\) :

Dimensionless plume

d :

Nozzle diameter, mm

D 0 :

Ladle diameter, cm

D e :

Slag eye diameter, cm

D p :

Plume diameter, cm

Fr :

Froude number

Fr*:

Densimetric Froude number

g :

Acceleration of gravity, cm • s−2

h 0 :

Upper phase (slag) thickness without gas blowing, cm

h :

Upper phase (slag) thickness with gas blowing, cm

H :

Depth of bulk phase fluid in ladle, cm

j :

Unit vector in vertical direction

K1, K2:

Constants

\(\hat n\) :

Unit normal vector

Pa, Pb:

Pressures at top and bottom, respectively, of control volume, Pa

Q :

Gas flow rate, cm3 • s−1

s :

Ratio of thickness of top phase to depth of bulk phase

U 0 :

Velocity of downward flow in control volume, cm • s−1

U p :

Plume velocity (average rise velocity of two-phase mixture), cm • s-1

U pmax :

Maximum of plume velocity, cm • s−1

v :

Component of velocity vector

V :

Velocity vector

W :

Mass of water contained in control volume, g

α, ß, γ:

Constants

θ:

Vertical angle of downward flow in control volume

μs:

Kinematic viscosity, cm2 • s−1

ρo:

Density of oil, g • cm−3

ρ:

Density of water, g • cm−3

ρs:

Density of upper liquid, g • cm−3

ρm:

Density of bulk phase liquid, g • cm−3

Δρ:

Difference between top liquid and bulk liquid, g • cm−3

Ψ:

Gas fraction in plume

χ:

Numerical value

References

  1. V. S. Laktionov, S. I. Filippov, P. I. Melikhov, S. N. Paderion, V. A. Borisova, Metallurgist 15 (1971) 515–517.

    Article  Google Scholar 

  2. P. Dayal, K. Beskow, J. Björkvall, S. C. Du, Ironmak. Steelmak. 33 (2006) 454–464.

    Article  Google Scholar 

  3. H. Lachmund, Y. K. Xie, T. Buhes, W. Pluschkell, Steel Res. Int. 74 (2003) 77–85.

    Article  Google Scholar 

  4. T. X. Wei, F. Oeteys, Steel Res. Int. 63 (1992) 60–68.

    Article  Google Scholar 

  5. D. Mazumdar, J. W. Evans, Metall. Mater. Trans. B 35 (2004) 400–404.

    Article  Google Scholar 

  6. K. Yonezawa, K. Schwerdtfeger, Metall. Mater. Trans. B 30 (1999) 411–418.

    Article  Google Scholar 

  7. Subagyo, G. A. Brooks, G. A. Irons, ISIJ Int. 43 (2003) 262–263.

    Article  Google Scholar 

  8. M. Iguchi, K. Miyamoto, S. Yamashita, D. Iguchi, M. Zeze, ISIJ Int. 44 (2004) 636–638.

    Article  Google Scholar 

  9. D. Mazumdar, J. W. Evans, Metall. Mater. Trans. B 38 (2007) 497–499.

    Article  Google Scholar 

  10. K. Krishnapisharody, G. A. Irons, Metall. Mater. Trans. B 37 (2006) 763–772.

    Article  Google Scholar 

  11. K. Krishnapisharody, G. A. Irons, ISIJ Int. 48 (2008) 1807–1809.

    Article  Google Scholar 

  12. M. Peranandhanthan, D. Mazumdar, ISIJ Int. 50 (2010) 1622–1631.

    Article  Google Scholar 

  13. L. Wu, P. Valentin, D. Sichen, Steel Res. Int. 81 (2010) 508–515.

    Article  Google Scholar 

  14. K. Krishnapisharody, G. A. Irons, Metall. Mater. Trans. B 46 (2015) 191–198.

    Article  Google Scholar 

  15. M. Iguchi, H. Kawabata, K. Nakajima, Z. I. Morita, Metall. Mater. Trans. B 26 (1995) 67–73.

    Article  Google Scholar 

  16. M. Iguchi, H. Tokunaga, Metall. Mater. Trans. B 33 (2002) 695–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-shun Wu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Nn., Wu, Ls., Wang, Hc. et al. Size analysis of slag eye formed by gas blowing in ladle refining. J. Iron Steel Res. Int. 24, 243–250 (2017). https://doi.org/10.1016/S1006-706X(17)30036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30036-5

Key words

Navigation