Skip to main content
Log in

Preparation of porous titanium materials by powder sintering process and use of space holder technique

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

It is shown that an adapted powder sintering process can successfully prepare a 24.0%–35.5% porous titanium composite using 20 μm Ti powder and rice husk particles ranging in size between 250 μm and 600 μm. The phase constituents of the porous Ti composite samples were determined by X-ray diffraction (XRD) pattern sintered at 1250 °C. The generation of silicon in the form of a TiSi2 solid solution, injected into the substrate, illustrates the solid solution strengthening effect. The average grain size of the tested sample and the grain boundary area increase along with the silicon content. This indicates that silicon is dispersed within the green compact of Ti. As the distance from a hole becomes greater, the nanohardness increases until it reaches a maximum hardness of 3.5 GPa at approximately 1.5 mm. This may be due to the solid solution strengthening of SiO2. However, nanohardness is 3.3 GPa at a distance of approximately 0.5 mm from a hole’s edge. The compressive strength is measured to be in the range of 440–938 MPa. The strain reaches 14.8%–16.6% under compression testing. A large number of cleavage steps appear following a fracture. The observed fracture is a brittle fracture. Porous Ti composites with about 36% porosity have promising potential biomaterial applications, specifically related to bone implants and biological bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. D. Prado, F. S. D. Oliveira, R. D. Nascimento, Mater. Sci. Eng. C 52 (2015) 194–203.

    Article  Google Scholar 

  2. C. Cui, B. M. Hu, L. Zhao, Mater. Des. 32 (2011) 1684–1691.

    Article  Google Scholar 

  3. Y. Liu, L. F. Chen, H. P. Tang, Mater. Sci. Eng. A 418 (2006) 25–35.

    Article  Google Scholar 

  4. P. Sevilla, C. Aparicio, J. A. Planell, J. Alloys Comp. 439 (2007) 67–73.

    Article  Google Scholar 

  5. J. C. Caicedo, G. Zambrano, W. Aperador, Appl. Surf. Sci. 258 (2011) 312–320.

    Article  Google Scholar 

  6. J. W. Kaczmar, K. Pietrzak, W. Włosiński, J. Mater. Process. Technol. 106 (2000) 58–67.

    Article  Google Scholar 

  7. H. J. Rack, J. I. Qazi, Mater. Sci. Eng. C 26 (2006) 1269–1277.

    Article  Google Scholar 

  8. B. Q. Li, F. Yan, X. Lu, Mater. Sci. Eng. A 534 (2012) 43–52.

    Article  Google Scholar 

  9. B. Q. Li, C. Y. Wang, X. Lu, Mater. Des. 50 (2013) 613–619.

    Article  Google Scholar 

  10. F. Li, J. Li, G. Xu, J. Mech. Behav. Biomed. 46 (2016) 104–114.

    Article  Google Scholar 

  11. L. Zhang, Y. Q. Zhang, Y. H. Jiang, R. Zhou, Vacuum 122 (2015) 187–194.

    Article  Google Scholar 

  12. S. C. P. Cachinho, N. C. Rui, Powder Technol. 178 (2007) 109–113.

    Article  Google Scholar 

  13. S. W. Yook, H. D. Jung, C. H. Park, Acta Biomater. 8 (2012) 2401–2410.

    Article  Google Scholar 

  14. N. Jha, D. P. Mondai, J. D. Majumdar, Mater. Des. 47 (2013) 810–819.

    Article  Google Scholar 

  15. H. D. Jung, T. S. Jang, S. W. Yook, Mater. Sci. Eng. C 33 (2013) 59–63.

    Article  Google Scholar 

  16. L. I. Yan, Z. Guo, J. Hao, Rare Metals 27 (2008) 282–286.

    Article  Google Scholar 

  17. E. Carreño-Morelli, M. Rodríguez-Arbaizar, A. Amherd, Powder Metall. 57 (2014) 93–96.

    Article  Google Scholar 

  18. M. K. Ahn, I. H. Jo, Y. H. Koh, Mater. Lett. 120 (2014) 228–231.

    Article  Google Scholar 

  19. N. F. Daudt, M. Bram, A. P. C. Barbosa, Mater. Lett. 141 (2015) 194–197.

    Article  Google Scholar 

  20. X. H. Wang, J. S. Li, H. U. Rui, Trans. Nonferrous. Met. Soc. 25 (2015) 1543–1550.

    Article  Google Scholar 

  21. B. Arifvianto, M. A. Leeflang, J. Zhou, Powder Technol. 284 (2015) 112–121.

    Article  Google Scholar 

  22. S. Muñoz, J. Pavón, J. A. Rodriguez-Ortiz, Mater. Charact. 108 (2015) 68–78.

    Article  Google Scholar 

  23. B. Y. Li, L. J. Rong, Y. Y. Li, Acta Mater. 48 (2000) 3895–3904.

    Article  Google Scholar 

  24. A. Bandyopadhyay, F. Espana, V. K. Balla, Acta Biomater. 6 (2010) 1640–1648.

    Article  Google Scholar 

  25. B. Liu, Y. Liu, X. Y. He, Metall. Mater. Trans. A 38 (2007) 2825–2831.

    Article  Google Scholar 

  26. I. Basu, T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 579 (2013) 50–56.

    Article  Google Scholar 

  27. A. H. Gepreel, M. Niinomi, J. Mech. Behav. Biomed. 20 (2013) 407–415.

    Article  Google Scholar 

  28. J. W. Qiao, T. Zhang, F. Q. Yang, Sci. Rep-UK. 3 (2013) 130–134.

    Google Scholar 

  29. Y. Quan, F. Zhang, H. Rebl, Mater. Sci. Eng. A 565 (2013) 118–125.

    Article  Google Scholar 

  30. G. A. Crawford, N. Chawla, K. Das, Acta Biomater. 3 (2007) 359–367.

    Article  Google Scholar 

  31. T. Albrektsson, C. Johansson, Eur. Spine. J. 10 (2001) S96–S101.

    Article  Google Scholar 

  32. M. Niinomi, Biomaterials 24 (2003) 2673–2683.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-lin Lu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xs., Lu, Zl., Jia, L. et al. Preparation of porous titanium materials by powder sintering process and use of space holder technique. J. Iron Steel Res. Int. 24, 97–102 (2017). https://doi.org/10.1016/S1006-706X(17)30014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30014-6

Key words

Navigation