Skip to main content
Log in

Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and amorphous LaMg12-type alloys prepared by mechanical milling

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Nanocrystalline and amorphous LaMg12-type alloy-Ni composites with a nominal composition of LaMg11Ni+x wt. % Ni (x = 100, 200) were synthesized via ball milling. The influences of ball milling duration and Ni adding amount x on the gaseous and electrochemical hydrogen storage dynamics of the alloys were systematically studied. Gaseous hydrogen storage performances were studied by a differential scanning calorimeter and a Sievert apparatus. The dehydrogenation activation energy of the alloy hydrides was evaluated by Kissinger method. The electrochemical hydrogen storage dynamics of the alloys was investigated by an automatic galvanostatic system. The H atom diffusion and apparent activation enthalpy of the alloys were calculated. The results demonstrate that a variation in Ni content remarkably enhances the gaseous and electrochemical hydrogen storage dynamics performance of the alloys. The gaseous hydriding rate and high-rate discharge (HRD) ability of the alloys exhibit maximum values with varying milling duration. However, the dehydriding kinetics of the alloys is always accelerated by prolonging milling duration. Specifically, rising milling time from 5 to 60 h makes the hydrogen desorption ratio (a ratio of the dehydrogenation amount in 20 min to the saturated hydrogenation amount) increase from 57% to 66% for x = 100 alloy and from 57% to 70% for x = 200. Moreover, the improvement of gaseous hydrogen storage kinetics is attributed to the descending of dehydrogenation activation energy caused by the prolonging of milling duration and growing of Ni content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mori, K. Hirose, Int. J. Hydrogen Energy 34 (2009) 4569–4574.

    Article  Google Scholar 

  2. H. Fayaz, R. Saidur, N. Razali, F. S. Anuar, A. R. Saleman, M. R. Islam, Renew. Sust. Energ. Rev. 16 (2012) 5511–5528.

    Article  Google Scholar 

  3. Y. H. Zhang, Z. M. Yuan, W. G. Bu, F. Hu, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586.

    Article  Google Scholar 

  4. T. Yang, Z. M. Yuan, W. G. Bu, Z. C. Jia, Y. Qi, Y. H. Zhang, Int. J. Hydrogen Energy 41 (2016) 2689–2699.

    Article  Google Scholar 

  5. T. Umegaki, J. M. Yan, X. B. Zhang, S. Hiroshi, K. Nobuhiro, Q. Xu, Int. J. Hydrogen Energy 34 (2009) 2303–2311.

    Article  Google Scholar 

  6. Y. H. Zhang, Z. C. Jia, Z. M. Yuan, T. Yang, J. Iron Steel Res. Int. 22 (2015) 757–770.

    Article  Google Scholar 

  7. Y. Wang, S. Z. Qiao, X. Wang, Int. J. Hydrogen Energy 33 (2008) 5066–5072.

    Article  Google Scholar 

  8. Z. M. Yuan, T. Yang, W. G. Bu, H. W. Shang, Y. H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.

    Article  Google Scholar 

  9. L. P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 35 (2010) No. 10, 5133–5144.

    Article  Google Scholar 

  10. A. Zaluska, L. Zaluski, J. Strom-Olsen, J. Alloys Comp. 288 (1999) 217–225.

    Article  Google Scholar 

  11. F. C. Gennari, M. R. Esquivei, J. Alloys Comp. 459 (2008) 425–432.

    Article  Google Scholar 

  12. T. Spassov, U. Lyubenova, U. Köster, M. D. Barò, Mater. Sci. Eng. A 375–377 (2004) 794–799.

    Article  Google Scholar 

  13. A. P. Andrey, V. D. Roman, P. M. Jan, K. S. Jan, P. T. Boris, A. Y. Volodymyr, Int. J. Hydrogen Energy 37 (2012) 3548–3557.

    Article  Google Scholar 

  14. Y. Wang, X. Wang, C. M. Li, Int. J. Hydrogen Energy 35 (2010) 3550–3554.

    Article  Google Scholar 

  15. Q. A. Zhang, C. J. Jiang, D. D. Liu, Int. J. Hydrogen Energy 37 (2012) 10709–10714.

    Article  Google Scholar 

  16. M. Abdellaoui, S. Mokbli, F. Cuevas, M. Latroche, A. Percheron-Gue’gan, H. Zarrouk, J. Alloys Comp. 356–357 (2003) 557–561.

    Article  Google Scholar 

  17. L. Z. Ouyang, J. M. Huang, C. J. Fang, Q. A. Zhang, D. L. Sun, M. Zhu, Int. J. Hydrogen Energy 37 (2012) 12358–12364.

    Article  Google Scholar 

  18. A. Mustafa, K. Fatma, K. Nilüfer, Int. J. Hydrogen Energy 37 (2012) 299–308.

    Google Scholar 

  19. T. Sadhasivam, M. Sterlin Leo Hudson, K. P. Sunita, B. Ashish, K. S. Milind, K. Gurunathan, O. N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.

    Article  Google Scholar 

  20. H. E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

    Article  Google Scholar 

  21. Y. Wu, W. Han, S. X. Zhou, M. V. Lototsky, J. K. Solberg, V. A. Yartys, J. Alloys Comp. 466 (2008) 176–181.

    Article  Google Scholar 

  22. D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, X. H. Qu, J. Alloys Comp. 478 (2009) 96–102.

    Article  Google Scholar 

  23. M. Y. Song, C. D. Yim, S. N. Kwon, J. S. Bae, S. H. Hong, Int. J. Hydrogen Energy 33 (2008) 87–92.

    Article  Google Scholar 

  24. M. Anik, J. Alloys Comp. 491 (2010) 565–570.

    Article  Google Scholar 

  25. X. Y. Zhao, Y. Ding, L. Q. Ma, L. Y. Wang, M. Yang, X. D. Shen, Int. J. Hydrogen Energy 33 (2008) 6727–6733.

    Article  Google Scholar 

  26. G. Zheng, B. N. Popov, R. E. White, J. Electrochem. Soc. 142 (1995) 2695–2698.

    Article  Google Scholar 

  27. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, T. Iwasaki, J. Alloys Comp. 202 (1993) 183–197.

    Article  Google Scholar 

  28. Y. H. Zhang, P. J. Zhang, Z. M. Yuan, T. Yang, Y. Qi, D. L. Zhao, J. Rare Earths 33 (2015) 874–883.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-huan Zhang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Dc., Sun, H., Hou, Zh. et al. Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and amorphous LaMg12-type alloys prepared by mechanical milling. J. Iron Steel Res. Int. 24, 50–58 (2017). https://doi.org/10.1016/S1006-706X(17)30008-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30008-0

Key words

Navigation