Skip to main content
Log in

Transverse Bending Characteristics in U-channel Forming of Tailor Rolled Blank

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U-channel was studied through simulation and experiment. The forming characteristics of TRB U-channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springback and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuniform stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springback of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kopp, C. Windiner, A. Meyer, Int. Sheet Met. Rev. 4 (2005) 20–24.

    Google Scholar 

  2. G. Hirt, D. H. Davalos-Julca, Steel Res. Int. 83 (2012) 100–105.

    Article  Google Scholar 

  3. M. Merklein, M. Johannes, M. Lechner, A. Kuppert, J. Mater. Process. Technol. 214 (2014) 151–164.

    Article  Google Scholar 

  4. X. H. Liu, J. Iron Steel Res. Int. 18 (2011) No. 1, 1–7.

    Article  Google Scholar 

  5. X. H. Liu, Q. L. Zhao, L. Z. Liu, Acta Metall. Sin. (Engl. Lett.) 27 (2014) 483–493.

    Article  Google Scholar 

  6. Z. Tekiner, J. Mater. Process. Technol. 145 (2004) 109–117.

    Article  Google Scholar 

  7. I. N. Vladimirov, M. P. Pietryga, S. Reese, J. Mater. Process. Technol. 209 (2009) 4062–4075.

    Article  Google Scholar 

  8. S. H. Chang, J. M. Shin, Y. M. Heo, D. G. Seo, J. Mater. Process. Technol. 130 (2002) 14–19.

    Article  Google Scholar 

  9. D. G. Seo, S. H. Chang, Y. M. Heo, Met. Mater. Int. 9 (2003) 571–576.

    Article  Google Scholar 

  10. Y. C. Duan, Y. P. Guan, B. Wu, Journal of Mechanical Engineering 49 (2013) No. 22, 76–83.

    Article  Google Scholar 

  11. H. W. Zhang, X. H. Liu, L. Z. Liu, P. Hu, J. L. Wu, J. Iron Steel Res. Int. 23 (2016) 185–189.

    Article  Google Scholar 

  12. M. Urban, M. Krahn, G. Hirt, R. Kopp, J. Mater. Process. Technol. 177 (2006) 360–363.

    Article  Google Scholar 

  13. A. Meyer, B. Wietbrock, G. Hirt, Int. J. Mach. Tool. Manuf. 48 (2008) 522–531.

    Article  Google Scholar 

  14. P. Groche, M. Mirtsch, Steel Res. Int. 83 (2012) 106–114.

    Article  Google Scholar 

  15. B. Yang, Y. S. Gao, W. Zhang, H. M. Jiang, Y. S. Wei, Journal of Plasticity Engineering 21 (2014) 76–80.

    Google Scholar 

  16. Y. Q. Wang, J. Li, Y. X. Chen, Automobile Technology & Material (2013) No. 6, 10–13.

  17. A. Weinrich, C. Becker, F. Maevus, S. Chatti, A. E. Tekkaya, Adv. Mater. Res. 1018 (2014) 301–308.

    Article  Google Scholar 

  18. Y. F. Jiang, Y. L. Wang, G. D. Yuan, X. C. Li, D. Q. Shi, Journal of Machine Design 27 (2010) No. 1, 10–13.

    Google Scholar 

  19. H. W. Zhang, X. H. Liu, L. Z. Liu, P. Hu, J. L. Wu, Acta Metall. Sin. (Engl. Lett.) 28 (2015) 1198–1204.

    Article  Google Scholar 

  20. D. Kim, J. Kim, Y. Lee, H. Kwak, Y. Ryu, B. Han, Rare Metal 25 (2006) No. 6, 111–117.

    Article  Google Scholar 

  21. H. W. Kim, C. Y. Lim, Mater. Des. 31 (2010) No. S1, 71–75.

    Article  Google Scholar 

  22. X. J. Bao, Experimental Investigation and Numerical Simulation of Springback in Tailor Rolled Blanks Bending, Shanghai Jiaotong University, Shanghai, 2003.

    Google Scholar 

  23. H. W. Zhang, L. Z. Liu, P. Hu, X. H. Liu, J. Iron Steel Res. Int. 19 (2012) No. 9, 8–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-wei Zhang.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51475086); Natural Science Foundation of Hebei Province of China (E2016501118, E2015501073); China Postdoctoral Science Foundation (2016M591404)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hw., Guan, Yp., Wu, Jl. et al. Transverse Bending Characteristics in U-channel Forming of Tailor Rolled Blank. J. Iron Steel Res. Int. 23, 1249–1254 (2016). https://doi.org/10.1016/S1006-706X(16)30184-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30184-4

Key words

Navigation