Skip to main content
Log in

Effects of Chromium Addition on Preparation and Properties of Bulk Cementite

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Bulk cementites with the Cr contents of 0, 3. 01, 6. 03, 8. 22, and 11. 51 mass% were prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The results indicated that when the Cr content was low (3. 01 mass%), the phases were composed of cementite with a small amount of α-Fe at a sintering temperature of 1173 K, but the microstructure became single-phase alloyed cementite as the Cr content was further increased. It showed that micro-addition of Cr was beneficial for promoting the formation of cementite. Furthermore, the mechanical performance of cementite can be greatly affected by the variation of Cr content. The hardness, elastic modulus and elastic recovery presented a remarkably increasing tendency with the addition of Cr, and the maximum micro-hardness and elastic modulus values reached 1070. 74 HV and 199. 32 GPa, respectively, which were similar to the precipitation phase (cementite) obtained by melting and casting techniques. Moreover, when the Cr content was below 11. 51 mass%, the crystal structure of Fe3 C-type cementite would not change with increasing the Cr content. A Cr atom replaced an Fe atom in the lattice of the cementite, and voids appeared when Cr was doped into the cementite at content of about 11. 51 mass%, causing the relative density to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Berns, Wear 254 (2003) 47–54.

    Article  Google Scholar 

  2. D. Z. Guo, L. J. Wang, J. Z. Li, Wear 161 (1993) 173–178.

    Article  Google Scholar 

  3. H. Li, C. F. Burdett, Scripta Met. Mater. 29 (1993) 249–254.

    Article  Google Scholar 

  4. J. G. Sevillano, Mater. Sci. Eng. 21 (1975) 221–225.

    Article  Google Scholar 

  5. A. Inoue, T. Ogura, T. Masumoto, Trans. Jpn. Inst. Met. 17 (1976) 149–157.

    Article  Google Scholar 

  6. A. Inoue, T. Ogura, T. Masumoto, Scripta Metall. 11 (1977) 1–5.

    Article  Google Scholar 

  7. M. Umemoto, Y. Todaka, K. Tsuchiya, Mater, Sci. Forum. 426 (2003) 859–864.

    Article  Google Scholar 

  8. M. Umemoto, Y. Todaka, T. Takahashi, J. Metastable Nanocrystalline Mater. 15 (2003) 607–614.

    Article  Google Scholar 

  9. S. J. Campbell, G. M. Wang, A. Calka, Mater. Sci. Eng. A 226 (1997) 75–79.

    Article  Google Scholar 

  10. J. O. Andersson, Metall. Trans. A 19 (1988) 627–636.

    Article  Google Scholar 

  11. Z. K. Liu, L. Höglund, B. Jönsson, Metall. Trans. A 22 (1991) 1745–1752.

    Article  Google Scholar 

  12. R. Benz, J. F. Elliott, J. Chipman, Metall. Trans. 5 (1974) 2235–2240.

    Article  Google Scholar 

  13. C. T. Zhou, B. Xiao, J. Feng, J. D. Xing, X. J. Xie, Y. H. Chen, R. Zhou, Comput. Mater. Sci. 45 (2009) 986–992.

    Article  Google Scholar 

  14. M. Umemoto, Z. G. Liu, K. Masuyama, K. Tsuchiya, Scripta Mater. 45 (2001) 391–397.

    Article  Google Scholar 

  15. M. Umemoto, Z. G. Liu, H. Takaoka, M. Sawakami, K. Tsuchiya, K. Masuyama, Metall. Mater. Trans. A 32 (2001) 2127–2131.

    Article  Google Scholar 

  16. M. Umemoto, Y. Todaka, T. Takahashi, P. Li, R. Tokumiya, K. Tsuchiya, Mater. Sci. Eng. A 375 (2004) 894–898.

    Article  Google Scholar 

  17. D. Chaira, B. K. Mishra, S. Sangal, Powder Technol. 191 (2009) 149–154.

    Article  Google Scholar 

  18. D. Chaira, B. K. Mishra, S. Sangal, Mater. Sci. Eng. A 460 (2007) 111–120.

    Article  Google Scholar 

  19. C. Suryanarayana, M. G. Norton, X-ray Diffraction: A Practical Approach, Plenum, New York, 2013.

    Google Scholar 

  20. M. Mizuno, I. Tanaka, H. Adachi, Philos. Mag. B 75 (1997) 237–248.

    Article  Google Scholar 

  21. A. Dietzel, Glass Technol. 22 (1968) 41.

    Google Scholar 

  22. Y. J. Liang, Y. C. Che, Inorganic Thermodynamics Manual, Northeastern University Press, Shenyang, 1993.

    Google Scholar 

  23. D. Casellas, J. Caro, S. Molas, J. M. Prado, I. Valls, Acta Mater. 55 (2007) 4277–4286.

    Article  Google Scholar 

  24. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7 (1992) 1564–1583.

    Article  Google Scholar 

  25. L. Vocadlo, J. Brodholt, D. P. Dobson, K. S. Knight, W. G. Marshall, G. D. Price, I. G. Wood, Earth Planet. Sci. Lett. 203 (2002) 567–575.

    Article  Google Scholar 

  26. I. Manika, J. Maniks, Acta Mater. 54 (2006) 2049–2056.

    Article  Google Scholar 

  27. N. V. Steenberge, J. Sort, A. Concustell, J. Das, S. Scudino, S. Suriñach, J. Eckert, M. D. Baró, Scripta Mater. 56 (2007) 605–608.

    Article  Google Scholar 

  28. N. K. Mukhopadhyay, A. Beiger, P. Paufler, D. H. Kim, Mater. Sci. Eng. A 449 (2007) 954–957.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-chao Zheng or Zhi-fu Huang.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51371138)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Bc., Huang, Zf., Xing, Jd. et al. Effects of Chromium Addition on Preparation and Properties of Bulk Cementite. J. Iron Steel Res. Int. 23, 842–850 (2016). https://doi.org/10.1016/S1006-706X(16)30129-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30129-7

Key words

Navigation