Skip to main content
Log in

Influence of vanadium on fracture splitting property of medium carbon steel

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The fracture splitting property of medium carbon steel 37MnSiS microalloyed with V up to 0.45% was investigated by using simulated fracture splitting test, for the development of new crackable medium carbon steel to manufacture high performance connecting rod. Conventional high carbon steel C70S6 was used for comparison. The results show that the volume fraction of both ferrite and V-rich M(C,N) particles increases, and the pearlite interlamellar spacing decreases with increasing V content, which in turn results in gradual increase of strength and decrease of ductility and impact energy. The fracture splitting property of the tested steel could be improved significantly due to the increase of V content mainly through the precipitation hardening mechanism of fine M(C,N) precipitates. The fraction of brittle cleavage fracture in the crack initiation area increases noticeably with increasing V content and full brittle cleavage fracture surface could be obtained when V content was increased to 0.45%. It is concluded that medium carbon steel with V content higher than about 0.28% possesses not only comparable or even higher mechanical properties with those of conventional steel C70S6, but also excellent fracture splitting property, and therefore, is more suitable to fabricate high performance fracture splitting connecting rod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Gu, S. Yang, S. Ku, Y. Zhao, X. Dai, Int. J. Adv. Manuf. Technol. 25 (2005) 883–887.

    Article  Google Scholar 

  2. B. Repgen, SAE Technical Paper Series, 980882, 1998.

  3. P. F. Bariani, S. Bruschi, J. Mater. Process. Technol. 167 (2005) 529–535.

    Article  Google Scholar 

  4. X. Z. Zhang, Q. Z. Cai, G. F. Zhou, Q. F. Chen, Y. Z. Xiong, Adv. Mater. Res. 152–153 (2011) 301–308.

    Google Scholar 

  5. A. R. Khodabandeh, M. Jahazi, S. Yue, S. T. Aghdashi, Mater. Manuf. Process. 21 (2006) 105–110.

    Article  Google Scholar 

  6. S. Gündüz, A. Capar, J. Mater. Sci. 41 (2006) 561–564.

    Article  Google Scholar 

  7. T. Hasegawa, N. Sano, J. Heat Treat. 47 (2007) 343–349.

    Google Scholar 

  8. A. Babakhani, A. R. Kiani-Rashid, S. M. R. Ziaei, Mater. Manuf. Process. 27 (2012) 135–139.

    Article  Google Scholar 

  9. W. J. Hui, Z. X. Liu, Y. J. Zhang, S. L. Chen, H. Dong, Iron and Steel 47 (2012) No. 1, 69–73.

    Google Scholar 

  10. A. Kaynar, S. Gündüz, M. Turkmen, Mater. Des. 51 (2013) 819–825.

    Article  Google Scholar 

  11. X. Z. Zhang, Q. Z. Cai, G. F. Zhou, Q. F. Chen, Y. Z. Xiong, J. Mater. Sci. 46 (2011) 1789–1795.

    Article  Google Scholar 

  12. A. Matsugasako, Kobe Steel Eng. Reports 61 (2011) 75–78.

    Google Scholar 

  13. A. Fadel, D. Glisic, N. Radovic, D. Drobnjak, J. Mater. Sci. Technol. 28 (2012) 1053–1058.

    Article  Google Scholar 

  14. M. Hajisafari, S. Nategh, H. Yoozbashizadeh, A. Ekram, J. Iron Steel Res. Int. 20 (2013) No. 5, 66–73.

    Article  Google Scholar 

  15. X. Q. Zha, W. J. Hui, Q. L. Yong, H. Dong, Y. Q. Weng, J. M. Long, Acta Metall. Sin. 43 (2007) 719–723.

    Google Scholar 

  16. W. J. Hui, S. L. Chen, Y. J. Zhang, C. W. Shao, H. Dong, Mater. Des. 66 (2015) 227–234.

    Article  Google Scholar 

  17. R. Z. Wang, C. I. Garcia, M. Hua, K. Cho, H. T. Zhang, A. J. Deardo, ISIJ Int. 46 (2006) 1345–1353.

    Article  Google Scholar 

  18. F. Ishikawa, T. Takahashi, ISIJ Int. 35 (1995) 1128–1133.

    Article  Google Scholar 

  19. M. Gomez, L. Rancei, E. Escudero, S. F. Medina, J. Mater. Sci. Technol. 30 (2014) 511–516.

    Article  Google Scholar 

  20. V. Ollilainen, W. Kasprzak, L. Holappa, J. Mater. Process. Technol. 134 (2003) 405–412.

    Article  Google Scholar 

  21. F. Penalba, C. Garcia De Andres, M. Carsi, F. Zapirain, J. Mater. Sci. 31 (1996) 3847–3852.

    Article  Google Scholar 

  22. A. M. Elwazri, P. Wanjara, S. Yue, Metall. Mater. Trans. A 36 (2005) 2297–2305.

    Article  Google Scholar 

  23. L. Ceschini, A. Marconi, C. Martini, A. Morri, A. Di Schino, Mater. Des. 45 (2013) 171–178.

    Article  Google Scholar 

  24. D. P. Fairchild, D. G. Howden, W. A. T. Clark, Metall. Mater. Trans. A 31 (2000) 641–652.

    Article  Google Scholar 

  25. M. J. Balart, C. L. Davis, M. Strangwood, Mater. Sci. Eng. A 328 (2002) 48–57.

    Article  Google Scholar 

  26. J. Du, M. Strangwood, C. L. Davis, J. Mater. Sci. Technol. 28 (2012) 878–888.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jun Hup.

Additional information

Foundation Item: Item Sponsored by National High Technology Research and Development Program of China (2013AA031605)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hup, Wj., Shao, Cw., Zhang, Yj. et al. Influence of vanadium on fracture splitting property of medium carbon steel. J. Iron Steel Res. Int. 23, 475–483 (2016). https://doi.org/10.1016/S1006-706X(16)30075-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30075-9

Key words

Navigation