Skip to main content
Log in

Effect of spark plasma sintering temperature on electrochemical properties of La0.82Mg0.18Ni3.50Co0.15 alloy

  • Material
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Electrochemical properties of La0.82Mg0.18Ni3.50Co0.15 alloys synthesized by spark plasma sintering (SPS) were investigated based on the electrochemical measurements, physical parameters and microstructure observation. The sintering behavior of La0.82Mg0.18Ni3.50Co0.15 alloys at the temperatures of 900, 950 and 1000 °C is characterized by four stages, i. e., initial slight shrinkage, expansion, abrupt shrinkage and slight expansion. The maximum shrinkage displacement increases with increasing sintering temperature. All of the alloys consist of (La,Mg)2 (Ni,Co)7 phase; additionally, temperatures of 900 and 950 °C are beneficial to the formation of (La, Mg) (Ni, Co)3 phase, whereas the LaNi5 phase is easy to form in the alloy synthesized by SPS at 1000 °C. The electrochemical measurements indicate an evident change of the electrochemical performance of the alloys associated with increasing the sintering temperature. The discharge capacity of the alloys first increases and then decreases as sintering temperature rises, whereas their cycle stability clearly grows all the time. Furthermore, the charging-discharging potential difference and discharging efficiency both demonstrate that the electrochemical properties of the alloy electrodes first augment and then decline with increasing sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Hu, R. V. Denys, C. C. Nwakwuo, T. Holm, J. P. Maehlen, J. K. Solberg, V. A. Yartys, Electrochim. Acta 96 (2013) 27–33.

    Article  Google Scholar 

  2. X. P. Dong, L. Y. Yang, Y. H. Zhang, X. L. Wang, J. Iron Steel Res. Int. 16 (2009) No. 3, 83–88.

    Article  Google Scholar 

  3. L. F. Cheng, J. X. Zou, X. Q. Zeng, W. J. Ding, Intermetallics 38 (2013) 30–35.

    Article  Google Scholar 

  4. Y. H. Zhang, Z. C. Jia, Z. M. Yuan, T. Yang, Y. Qi, D. L. Zhao, J. Iron Steel Res. Int. 22 (2015) No. 9, 757–770.

    Article  Google Scholar 

  5. V. Y. Zadorozhnyy, S. N. Klyamkin, M. Y. Zadorozhnyy, M. V. Gorshenkov, S. D. Kaloshkin, J. Alloys Comp. 615 (2014) S569–S572.

    Article  Google Scholar 

  6. T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, J. Alloys Comp. 311 (2000) 5–7.

    Article  Google Scholar 

  7. T. Z. Si, Q. A. Zhang, N. Liu, Int. J. Hydrogen Energy 33 (2008) 1729–1734.

    Article  Google Scholar 

  8. L. Zhang, J. L. Zhang, S. M. Han, Y. Li, S. Q. Yang, J. J. Liu, Intermetallics 58 (2015) 65–70.

    Article  Google Scholar 

  9. Z. J. Gao, Y. C. Luo, L. Kang, Z. Lin, R. F. Li, J. Y. Wang, J. Rare Earths 28 (2010) 425–430.

    Article  Google Scholar 

  10. W. Liu, C. J. Webb, E. MacA. Gray, Int. J. Hydrogen Energy 41 (2016) 3485–3507.

    Article  Google Scholar 

  11. X. J. Liu, G. M. Cao, Y. Q. He, M. Yang, Z. Y. Liu, J. Iron Steel Res. Int. 21 (2014) No. 1, 24–29.

    Article  Google Scholar 

  12. F. Q. An, P. Li, X. P. Zheng, X. H. Qu, Rare Metal Mat. Eng. 36 (2007) 907–909.

    Google Scholar 

  13. J. X. Zhang, B. Villeroy, B. Knosp, B. Patrick, L. Michel, Int. J. Hydrogen Energy 37 (2012) 5225–5233.

    Article  Google Scholar 

  14. P. Pei, X. P. Song, J. Liu, A. N. Song, P. L. Zhang, G. L. Chen, Int. J. Hydrogen Energy 37 (2012) 984–989.

    Article  Google Scholar 

  15. H. W. Ni, H. He, G. Q. Li, J. Liu, J. Iron Steel Res. Int. 15 (2008) No. 4, 73–76.

    Article  Google Scholar 

  16. P. Li, Q. Wan, D. Rafi-ud, D. H. Xie, X. H. Qu, J. Univ. Sci. Technol. Beijing 33 (2011) 986–994.

    Google Scholar 

  17. H. A. A. Nayeb, J. B. Clark, Phase Diagrams of Binary Magnesium Alloys, ASM, Metals Park, Michigan, OH, USA, 1988.

    Google Scholar 

  18. S. Yasuoka, Y. Magari, T. Murata, T. Tanaka, J. Ishida, H. Nakamura, T. Nohma, M. Kihara, Y. Baba, H. Teraoka, J. Power Sources 156 (2006) 662–666.

    Article  Google Scholar 

  19. B. D. Dunlap, P. J. Viccaro, G. K. Shenoy, J. Less-Common Metals 74 (1980) No. 1, 75–79.

    Article  Google Scholar 

  20. T. Kohno, H. Yoshida, M. Kanda, J. Alloys Comp. 363 (2004) 254–257.

    Article  Google Scholar 

  21. F. Li, K. Young, T. Ouchi, M. A. Fetcenko, J. Alloys Comp. 471 (2009) 371–377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ping Dong.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51371094, 51161015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Xp., Pang, Yr., Yang, Ly. et al. Effect of spark plasma sintering temperature on electrochemical properties of La0.82Mg0.18Ni3.50Co0.15 alloy. J. Iron Steel Res. Int. 23, 459–465 (2016). https://doi.org/10.1016/S1006-706X(16)30073-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30073-5

Key words

Navigation