Skip to main content
Log in

Solidification structure of continuous casting large round billets under mold electromagnetic stirring

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Harada, K. Miyazawa, T. Matsumiya, Tetsu-to-Hagané 89 (2003) 265–272.

    Article  Google Scholar 

  2. G. Straffelini, L. Lutterotti, M. Tonolli, M. Lestani, ISIJ Int. 51 (2011) 1448–1453.

    Article  Google Scholar 

  3. C. L. Jing, X. L. Wang, M. Jiang, Steel Res. Int. 82 (2011) 1173–1179.

    Article  Google Scholar 

  4. M. Yamazaki, Y. Natsume, H. Harada, K. Ohsasa, ISIJ Int. 46 (2006) 903–908.

    Article  Google Scholar 

  5. Z. B. Hou, F. Jiang, G. G. Cheng, ISIJ Int. 52 (2012) 1301–1309.

    Article  Google Scholar 

  6. M. Rappaz, C. A. Gandin, Acta Metall. Mater. 41 (1993) 345–360.

    Article  Google Scholar 

  7. C. A. Gandin, M. Rappaz, Acta Metall. Mater. 42 (1994) 2233–2246.

    Article  Google Scholar 

  8. L. Nastac, D. M. Stefanescu, Model. Simul. Mater. Sci. Eng. 5 (1997) 391–420.

    Article  Google Scholar 

  9. L. Nastac, Acta Mater. 47 (1999) 4253–4262.

    Article  Google Scholar 

  10. B. R. Baliga, S. V. Patankar, Numer. Heat Transfer 3 (1980) 393–409.

    Article  Google Scholar 

  11. Y. H. Wu, M. Chuedoung, G. Zhang, Optimization Methods and Applications, Springer-Verlag New York Inc., New York, 2001, pp. 399–412.

    Book  Google Scholar 

  12. B. Lally, L. Biegler, H. Henein, Metall. Trans. B 21 (1990) 761–770.

    Article  Google Scholar 

  13. A. Tieu, I. Kim, Int. J. Mech. Sci. 39 (1997) 185–192.

    Article  Google Scholar 

  14. S. K. Choudhary, D. Mazumdar, Steel Res. Int. 66 (1995) 199–205.

    Article  Google Scholar 

  15. K. J. Schwerdtfeger, The Casting Volume of the Making, Shaping and Treating of Steel, 11th ed., The AISE Steel Foundation, Pittsburgh, PA, 2003.

    Google Scholar 

  16. Ph. Thévoz, J. L. Desbiolles, M. Rappaz, Metall. Trans. A 20 (1989) 311–322.

    Article  Google Scholar 

  17. W. Kurz, B. Giovanola, R. Trivedi, Acta Metall. 34 (1986) 823–830.

    Article  Google Scholar 

  18. W. Kurz, D. J. Fisher, Fundaments of Solidification, 4th revised ed., Trans. Tech. Publishers, Aedermannsdorf, Switzerland, 1998.

    Google Scholar 

  19. M. Bobadilla, J. Lacaze, G. Lesoult, J. Cryst. Growth 89 (1988) 531–544.

    Article  Google Scholar 

  20. J. Q. Yu, W. Z. Yi, B. D. Chen, H. J. Chen, Binary Alloy Phase Diagram, Shanghai Science and Technology Press, Shanghai, 1987.

    Google Scholar 

  21. J. X. Chen, Ferrous Metallurgy, Metallurgical Industry Press, Beijing, 2004.

    Google Scholar 

  22. W. C. Li, Physical Chemistry of Metallurgy and Materials, Metallurgical Industry Press, Beijing, 2001.

    Google Scholar 

  23. C. A. Gandin, J. L. Desbiolles, M. Rappaz, P. Thevoz, Metall. Mater. Trans. A 30 (1999) 3153–3165.

    Article  Google Scholar 

  24. E. A. Mizikar, Trans. Metall. Soc. AIME 239 (1967) 1747–1753.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Yue, F., Wu, Hj. et al. Solidification structure of continuous casting large round billets under mold electromagnetic stirring. J. Iron Steel Res. Int. 23, 329–337 (2016). https://doi.org/10.1016/S1006-706X(16)30053-X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30053-X

Key words

Navigation