Skip to main content
Log in

Modeling of liquid level and bubble behavior in vacuum chamber of RH process

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In the Ruhrstahl-Heraeus (RH) refining process, liquid steel flow pattern in a ladle is controlled by the fluid flow behavior in the vacuum chamber. Potassium chloride solution and NaOH solution saturated with CO2 were respectively used as a tracer to investigate the liquid and gas flow behaviors in the vacuum chamber. Principal component and comparative analysis were made to show the factors controlling mixing and circulation flow rate. The liquid level and bubble behavior in the vacuum chamber greatly affect fluid flow in RH process. Experiments were performed to investigate the effects of liquid steel level, gas flow rate, bubble residence time, and gas injection mode on mixing, decarburization, and void fraction. The results indicate that the mixing process can be divided into three regions: the flow rate-affected zone, the concentration gradient-affected zone, and their combination. The liquid steel level in the vacuum chamber of 300 mm is a critical point in the decarburization transition. For liquid level lower than 300 mm, liquid steel circulation controls decarburization, while for liquid level higher than 300 mm, bubble behavior is the main controlling factor. During the RH process, it is recommended to use the concentrated bubble injection mode for low gas flow rates and the uniform bubble injection mode for high gas flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Gao, Technology Development of High-quality Steel Production, World Metal Herald, 2013-04-23 (B03).

  2. L. Zhang, Y. H. Sun, J. F. Zhu, J. Univ. Sci. Technol. Beijing 31 (2009) 821–825.

    Google Scholar 

  3. J. H. Wei, H. T. Hu, Ironmak. Steelmak. 32 (2005) 427–433.

    Article  Google Scholar 

  4. D. Q. Geng, H. Lei, J. C. He, Ironmak. Steelmak. 39 (2012) 431–437.

    Article  Google Scholar 

  5. Y. Kato, H. Nakato, T. Fujill, ISIJ Int. 33 (1993) 1088–1094.

    Article  Google Scholar 

  6. P. A. Kishan, S. K. Dash, ISIJ Int. 49 (2009) 495–504.

    Article  Google Scholar 

  7. K. Ono, M. Yanagida, T. Katoh, M. Miwa, T. Okamoto, Electric Furnace Steel 52 (1981) 149–157.

    Google Scholar 

  8. P. A. Kishan, S. K. Dash, ISIJ Int. 47 (2007) 1549–1551.

    Article  Google Scholar 

  9. M. K. Mondai, N. Maruoka, S. Kitamura, Trans. Indian Inst. Met. 65 (2012) 321–331.

    Article  Google Scholar 

  10. D. Q. Geng, H. Lei, J. C. He, Metall. Trans. B 41 (2010) 234–247.

    Article  Google Scholar 

  11. C. W. Li, G. G. Cheng, X. H. Wang, G. S. Zhu, A. M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–29.

    Article  Google Scholar 

  12. H. B. Yang, S. F. Yang, J. S. Li, J. S. Zhang, J. Iron Steel Res. Int. 21 (2014) 995–1001.

    Article  Google Scholar 

  13. D. Guo, G. A. Irons, Metall. Trans. B 31 (2000) 1447–1455.

    Article  Google Scholar 

  14. S. H. Kim, R. J. Fruehan, Metall. Trans. B 18 (1987) 673–680.

    Article  Google Scholar 

  15. L. Neves, H. P. O. de Oliveira, ISIJ Int. 49 (2009) 1141–1149.

    Article  Google Scholar 

  16. S. Kitamura, H. Aoki, K. Miyamoto, ISIJ Int. 40 (2000) 455–459.

    Article  Google Scholar 

  17. S. K. Ajmani, S. K. Dash, ISIJ Int. 44 (2004) 82–90.

    Article  Google Scholar 

  18. T. Ou, J. G. Liu, J. Y. Zhang, Acta Metall. Sin. 35 (1999) 411–415.

    Google Scholar 

  19. D. Z. Zhang, A. Prosperetti, J. Fluid Mech. 267 (1994) 185–219.

    Article  MathSciNet  Google Scholar 

  20. M. Sano, K. Mori, Iron Steel Inst. Jpn. 21 (1980) 675–681.

    Google Scholar 

  21. Y. Higuchi, H. Ikenaga, Y. Shirota, Tetsu-to-Hagané 84 (1998) 709–714.

    Article  Google Scholar 

  22. N. Maruoka, F. Lazuardi, H. Nogami, ISIJ Int. 50 (2010) 89–94.

    Article  Google Scholar 

  23. T. Kitamura, K. Miyamoto, R. Tsujino, ISIJ Int. 36 (1996) 395–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-hong Li.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51404022); Doctoral Fund of Ministry of Education of China (20130006110023); Ph. D Early Development Program of Taiyuan University of Science and Technology of China (20152008, 20142001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yh., Bao, Yp., Wang, R. et al. Modeling of liquid level and bubble behavior in vacuum chamber of RH process. J. Iron Steel Res. Int. 23, 305–313 (2016). https://doi.org/10.1016/S1006-706X(16)30050-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30050-4

Key words

Navigation