Skip to main content
Log in

Austenite Grain Refinement by Reverse α′➝γ Transformation in Metastable Austenitic Manganese Steel

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2017

Abstract

Microstructure of metastable austenitic manganese steel after reverse transformation treatment was investigated using optical microscopy, X-ray diffraction (XRD.), electrical resistivity and hardness testing. Austenite grain refinement was successfully achieved by a two-step heat treatment. First, martensite was produced by cooling the solution-treated samples to —196 °C. Then, the deep cryogenic treated samples were heated to 850 °C upon slow or rapid heating. The mean size of original austenite grain was about 400 μm. But the mean size of equiaxed reversion austenite was refined to 50 μm. Microstructurc evolution and electrical resistivity change showed that martensite plates underwent tempering action upon slow heating, and the residual austenite was decomposed, resulting in the formation of pearlitc nodules at the austenite grains boundaries. The refinement mechanism upon slow heating is the diffusion-controlled nucleation and growth of austenite. However, the reverse transformation upon rapid heating was predominated by displacivc manner. The residual austenite was not decomposed. The plate α-phase was carbon-supersaturated until the starting of reverse transformation. The reverse transformation was accompanied by surface effect, resulting in the formation of plate austenite with high density dislocations. The refinement mechanism upon rapid heating is the recrystallization of displacive reversed austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Jing, F. C. Zhang, Mater. Lett. 31 (1997) 275–279.

    Article  Google Scholar 

  2. Y. G. Zhao, J. T. Zhang, J. Tan, B. D. Ma, J. Iron Steel Res. Int. 21 (2014) No. 7, 685–689.

    Article  Google Scholar 

  3. J. Xie, A. Wang, W. Wang, J. Li, X. Li, Mater. Sci. Eng. A 483–484 (2008) 743–746.

    Article  Google Scholar 

  4. J. Q. Chuan, H. Z. Ming, C. D. Huan, W. S. Shi, Y. J. Lin, J. Mater. Sci. Lett. 9 (1990) 616–617.

    Article  Google Scholar 

  5. K. Zhang, D. Tang, H. B. Wu, J. Iron Steel Res. Int. 19 (2012) No. 9, 73–78.

    Article  Google Scholar 

  6. W. Jiang, K. Y. Zhao, D. Ye, J. Li, Z. D. Li, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 61–65.

    Article  Google Scholar 

  7. Z. F. Hu, C. X. Wang, J. Iron Steel Res. Int. 19 (2012) No. 5, 63–68.

    Article  Google Scholar 

  8. S. Kurosu, H. Matsumoto, A. Chiba, Mater. Lett. 64 (2010) 49–52.

    Article  Google Scholar 

  9. Z. L. Jiang, X. Chen, H. Huang, X. Liu, Mater. Sci. Eng. A 363 (2003) 263–267.

    Article  Google Scholar 

  10. N. Nakada, N. Hirakawa, T. Tsuchiyama, S. Takaki, Scripta Mater. 57 (2007) 153–156.

    Article  Google Scholar 

  11. A. D. Schino, I. Salvatori, J. Kenny, J. Mater. Sci. 37 (2002) 4561–4565.

    Article  Google Scholar 

  12. C. A. Apple, G. Krauss, Acta Metall. 20 (1972) 849–856.

    Article  Google Scholar 

  13. N. Nakada, T. Tsuchiyama, S. Takaki, D. Ponge, D. Raabe, ISIJ Int. 53 (2013) 2275–2277.

    Article  Google Scholar 

  14. D. S. Leem, Y. D. Lee, J. H. Jun, C. S. Choi, Scripta Mater. 45 (2001) 767–772.

    Article  Google Scholar 

  15. G. Krauss, Acta Metall. 11 (1963) 499–509.

    Article  Google Scholar 

  16. N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, D. Raabe, ISIJ Int. 53 (2013) 1286–1288.

    Article  Google Scholar 

  17. K. Andrews, J. Iron Steel Inst. 203 (1965) 721–727.

    Google Scholar 

  18. H. Chen, H. Era, M. Shimizu, Metall. Trans. A 20 (1989) 437–445.

    Article  Google Scholar 

  19. K. Yu, S. Nahm, Y. Kim, J. Mater. Sci. Lett. 18 (1999) 1175–1176.

    Article  Google Scholar 

  20. G. Krauss Jr., M. Cohen, Transactions of the Metallurgical Society of AIME, 224 (1962) 1212–1221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-tao Zhang or Yu-guang Zhao.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51071075)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jt., Zhao, Yg., Tan, J. et al. Austenite Grain Refinement by Reverse α′➝γ Transformation in Metastable Austenitic Manganese Steel. J. Iron Steel Res. Int. 22, 157–162 (2015). https://doi.org/10.1016/S1006-706X(15)60024-3

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)60024-3

Key words

Navigation